一篇文章讲清楚如何DeepSeek本地部署,解决下载慢问题

已经测试机型

显卡模型效果
1050~1050Ti1.5b的最好
16507b用多了会卡
3090ti14b稳稳拿捏
409032b轻松拿捏
409070b报错cuda问题

安装Ollama

Ollama地址

  1. 点击我直接下载Ollama.exe
  2. Ollama地址

安装Ollama

  • Ollama没有选择安装地址,默认装在C盘,后期下载AI模型也会下到C盘,不建议用默认安装,想装到别的盘的话请看下方
  1. 在D盘创建一个文件夹随便起名字就可以D盘创建一个文件夹存放Ollama
  2. 点住Shift键然后右键选择在终端打开
    在这里插入图片描述
  3. 输入 “.\OllamaSetup.exe /DIR=D:\Ollama_”,然后点击回车键
  • 解释:“.\OllamaSetup.exe /DIR=” 这个命令用于显示当前目录中的文件和子目录的列表,ollama安装到这个**“D:\Ollama_”*目录里面在这里插入图片描述
  1. 出现以下界面说明成功了,点击Install开始安装在这里插入图片描述

安装webUI

  1. 下载Page Assist,在谷歌商店里面查找Page Assist 点我下载安装
    在这里插入图片描述
    2.安装成功之后记得点上固定
    在这里插入图片描述
    3.然后点击ollama
    在这里插入图片描述
    4.进入到这个页面之后查看
    在这里插入图片描述
    5.设置中文
    在这里插入图片描述
    6.测试ollama是否正常访问这个链接 http://127.0.0.1:11434,ollama的端口号是11434,后面我们做成局域网会用到
    在这里插入图片描述

修改DeepSeek模型或者其他AI模型存放位置

  1. 安装成功之后,默认AI模型放到C盘/user/.Ollama这个路径里面,不过我们要修改模型安装位置,点击高级系统设置在这里插入图片描述
  2. 点击环境变量
    在这里插入图片描述
  3. 点击新建环境变量,写入OLLAMA_MODELS,然后浏览目录写入变量值也就是你要存在什么位置,输入成功之后,点击确定,然后在点击确定依次点击然后就设置模型位置成功了,重启电脑!重启电脑!
    在这里插入图片描述

下载模型

1.打开命令提示符,选择模型,进行下载,下面是每个模型的命令行

下载模型命令行模型占用内存
ollama run deepseek-r1:1.5b1.1GB
ollama run deepseek-r1:7b4.7GB
ollama run deepseek-r1:8b4.9GB
ollama run deepseek-r1:14b9.0GB
ollama run deepseek-r1:32b20GB
ollama run deepseek-r1:70b43GB
ollama run deepseek-r1:671b404GB
  • 输入下载命令行 ==“ollama run deepseek-r1:1.5b”==输入完成之后点击回车,我这里是下载1.5b的内存1.1GB,先下内存小的,先试试看,
    在这里插入图片描述2.下载中,出现这个进度条之后,说明正在下载,里面有个奇怪的问题,进度条看着是56%如果网有问题的话会倒退的,如果下载慢的话或者下到99%卡住了,或者其他问题,下面会单独说下 下载的问题。
    在这里插入图片描述
    3.下载完成,直接输入询问
    在这里插入图片描述

4.在webUI上测试是否正常,回到设置界面
在这里插入图片描述
4.选择1.5b开始聊天,到此结束
在这里插入图片描述

下载问题解决

  • 下载慢解决方案
  1. 如果进度条走到90%~99%卡死不动了,那么赶紧拔一下网线,然后3秒之后插回去,或者禁用网络3秒左右在启用,很好用
  2. 如果进度条回退了,那么可能网络有问题,建议选择好的线路下载,一般1.5b不会出现这个情况
  3. 如果一直报错,有可能是ollama的问题下载的人太多了
  4. 如果报错路径问题,查看环境变量或者没有重启电脑,然后重复输入下载指令,重复多次还是不行就重启电脑
  5. 如果报错unable to allocate cuda0 buffer,是因为你显卡垃圾,重新选个小的下载
  6. 如果以上还是不行的话,那么从国内下载把,下面详解

在其他网站上下载

  1. 魔搭网-点我进入
    一定要选择GGUF格式的哦
    在这里插入图片描述2.点击模型,然后下载,自己量力而行,Q2到Q8都不一样数字越大,模型精度越高,电脑越吃性能,回答的越好

在这里插入图片描述
3.下载完成之后,随便找个地方放,我是放到了Ollama位置,重新创建了一个文件夹叫DS
在这里插入图片描述
4.在创建个txt文件,我这里叫DSR1.5B我随便起的名字
在这里插入图片描述
6.在我们刚创建的DSR1.5B.txt文本里面写上内容,图片下面是代码直接复制改成你的下载的模型名字即可
在这里插入图片描述

FROM ./DeepSeek-R1-Distill-Qwen-1.5B-Q3_K_M.gguf    
PARAMETER temperature 0.7                       
PARAMETER top_p 0.95
PARAMETER top_k 40
PARAMETER repeat_penalty 1.1
PARAMETER min_p 0.05
PARAMETER num_ctx 1024                 
PARAMETER num_thread 4                  
PARAMETER num_gpu 8                     


# 设置对话终止符
PARAMETER stop "<|begin▁of▁sentence|>"
PARAMETER stop "<|end▁of▁sentence|>"
PARAMETER stop "<|User|>"
PARAMETER stop "<|Assistant|>"


SYSTEM """
"""

TEMPLATE """{{- if .System }}{{ .System }}{{ end }} 
{{- range $i, $_ := .Messages }} 
{{- $last := eq (len (slice $.Messages $i)) 1}}
{{- if eq .Role "user" }}<|User|>{{ .Content }}
{{- else if eq .Role "assistant" }}<|Assistant|>{{ .Content }}{{- if not $last }}<|end▁of▁sentence|>{{- end }}
{{- end }}
{{- if and $last (ne .Role "assistant") }}<|Assistant|>{{- end }} 
{{- end }}"""

6.输入CMD打开命令提示符界面
在这里插入图片描述

7.打开CMD输入ollama create test-ds-r1:1.5b -f ./DSR1.5B.txt自己改一下模型名字和txt名字,然点击回车
在这里插入图片描述

8.OK兄弟全体目光看齐,我们成功的装上,人工智障了
在这里插入图片描述
9.问人工智障个问题看看怎么样,输入ollama run 你刚才的模型名字,显然1.5B的是个智障,也可以在那个webui上选择去问,到此结束
在这里插入图片描述

### DEEPSEEK 本地部署响应解决方案 对于遇到的 DeepSeek R1 卡顿问题,有几种方法能够有效提升性能并减少延迟。以下是针对 DeepSeek 本地部署响应速度较的具体优化措施: #### 调整资源配置 确保分配给 DeepSeek 的计算资源充足至关重要。如果硬件条件允许,增加内存和 CPU 核心数可显著改善处理效率[^1]。 ```bash # 修改配置文件中的资源参数 nano /path/to/deepseek/config.yaml ``` #### 使用高效存储介质 采用 SSD 替代 HDD 可加快数据读取写入的速度,从而提高整体运行效能。SSD 提供更快的数据访问时间,在加载大型模型或频繁 I/O 操作时尤为明显。 #### 合理设置缓存机制 通过引入合适的缓存策略来减轻重复请求带来的负担。例如,利用 Redis 或 Memcached 存储临时结果,避免不必要的重新计算过程。 ```python import redis r = redis.Redis(host='localhost', port=6379, db=0) def get_cached_data(key): cached_value = r.get(key) if not cached_value: # 计算新值并保存到缓存中 new_value = compute_expensive_operation() r.setex(key, ttl_in_seconds, new_value) return cached_value.decode('utf-8') ``` #### 并行化任务执行 尽可能多地实现异步操作和支持并发的任务调度方式,这有助于充分利用多核处理器的优势,进而加速程序的整体表现。 ```python from concurrent.futures import ThreadPoolExecutor with ThreadPoolExecutor(max_workers=4) as executor: future_to_url = {executor.submit(load_website, url): url for url in urls} for future in futures.as_completed(future_to_url): try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值