转载自:
http://blog.sina.com.cn/s/blog_62970c250102xfzj.html
1.SVM回归模型的损失函数度量
我们知道SVM分类模型的目标函数是
,
同时要让训练集中的各个样本点尽量远离自己类别一侧的支持向量,即约束条件是

。如果加上一个松弛变量,则目标函数变成

,对应的约束条件变成
。
对于回归模型,优化目标函数和分类模型保持一致,依然是
,但是约束条件不同。我们知道回归模型的目标是让训练集中的每个样本点(xi,yi),尽量拟合到一个线性模型
上。对于一般的回归模型,我们是用均方误差作为损失函数的,但SVM不是这样定义损失函数的。
SVM需要定义一个常量
,对于某个样本点(xi,yi),如果
,则完全没有损失;如果大于,则对应的损失为
。这个损失函数和均方误差不同,如果是均方误差,则只要
就会有损失。
如下图所示,在蓝色带里面的点都是没有损失的,但是外面的点是有损失的,损失大小为红色线的长度。

总结一下,SVM回归模型的损失函数度量为:

svm回归
最新推荐文章于 2023-07-09 23:17:07 发布
本文深入探讨了SVM回归模型的损失函数定义方式,与传统的均方误差不同,SVM通过引入常量实现对预测误差的特殊处理,使得在一定范围内的误差被视为无损失,超过此范围则按超出部分计算损失。
7232

被折叠的 条评论
为什么被折叠?



