svm回归

本文深入探讨了SVM回归模型的损失函数定义方式,与传统的均方误差不同,SVM通过引入常量实现对预测误差的特殊处理,使得在一定范围内的误差被视为无损失,超过此范围则按超出部分计算损失。

转载自:
http://blog.sina.com.cn/s/blog_62970c250102xfzj.html
1.SVM回归模型的损失函数度量
我们知道SVM分类模型的目标函数是
在这里插入图片描述
同时要让训练集中的各个样本点尽量远离自己类别一侧的支持向量,即约束条件是
在这里插入图片描述
。如果加上一个松弛变量,则目标函数变成
在这里插入图片描述
,对应的约束条件变成
在这里插入图片描述
对于回归模型,优化目标函数和分类模型保持一致,依然是
在这里插入图片描述,但是约束条件不同。我们知道回归模型的目标是让训练集中的每个样本点(xi,yi),尽量拟合到一个线性模型在这里插入图片描述上。对于一般的回归模型,我们是用均方误差作为损失函数的,但SVM不是这样定义损失函数的。
SVM需要定义一个常量在这里插入图片描述,对于某个样本点(xi,yi),如果在这里插入图片描述,则完全没有损失;如果大于,则对应的损失为在这里插入图片描述。这个损失函数和均方误差不同,如果是均方误差,则只要在这里插入图片描述就会有损失。
如下图所示,在蓝色带里面的点都是没有损失的,但是外面的点是有损失的,损失大小为红色线的长度。
在这里插入图片描述
总结一下,SVM回归模型的损失函数度量为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值