[hashmap|空间换时间] leetcode 1 两数之和

本文探讨了如何通过使用哈希映射(HashMap)将LeetCode中的两数之和问题的时间复杂度从O(n^2)降低到O(n)。通过构建一个值-下标映射,快速判断目标值与数组元素的组合。C++示例代码演示了如何在unordered_map中实现这一优化。
摘要由CSDN通过智能技术生成

[hashmap|空间换时间] leetcode 1 两数之和

1.题目

题目链接
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:

给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]

2.分析

2.1.第一印象

第一眼的想法为“暴力求解”,即利用两层for循环遍历数组,判断是否有满足条件的数对:

vector<int> twoSum(vector<int>& nums, int target) {
    vector<int> res;
    for(int i = 0; i < nums.size(); i++) {
        for(int j = i + 1; j < nums.size(); j++) {
            if(nums[i] + nums[j] == target){
                res.push_back(i);
                res.push_back(j);
                return res;
            }
        }
    }
    return res;
}

时间复杂度为O(n2)。能否在此基础上进行改进?

2.2.HashMap

HashMap存储着key-value键值对,一个显著的优势是能够将查找的时间复杂度降为O(1)
那么本题可以这么理解:对于当前遍历到的数a,只需要判断target - a是否在数组中即可。
此时key就是nums数组中第i个数的值,value就是数组中第i个数的下标(也就是i)。也就是说,同样是寻找一个数,通过构造一个反向的从值到下标的映射,可以压缩查找的时间。
原: 使用内层for循环来判断另一个数是否满足要求

for(int i = 0; i < nums.size(); i++) {
    for(int j = i + 1; j < nums.size(); j++) {
		//do something...
    }
}

改: 使用内层if来以O(1)的时间复杂度判断另一个数是否满足要求

for(int i = 0; i < nums.size(); i++) {
    if(map.find(target - nums[i] != map.end())) {
		//do something...
    }
}

修改后的代码便实现了所谓的空间换时间:用hashmap的 O(n) 的存储效率换取了 O(1) 的查找效率。

3.代码

C++中hashmap以unordered_map的形式实现。

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int,int> m;
        for(int i = 0; i < nums.size(); i++) {
            if(m.find(target-nums[i]) != m.end()) {
				return {m[target-nums[i]], i};  
			}              
            m[nums[i]] = i;      
        }
        return {};
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值