leetcode 397 整数替换

https://leetcode-cn.com/problems/integer-replacement/

题目

给定一个正整数 n n n ,你可以做如下操作:

如果 n n n是偶数,则用 n / 2 n / 2 n/2替换 n n n
如果 n n n是奇数,则可以用 n + 1 n + 1 n+1 n − 1 n - 1 n1替换 n n n
n n n变为 1 1 1所需的最小替换次数是多少?
示例 1:

输入:n = 8
输出:3
解释:8 -> 4 -> 2 -> 1

示例 2:

输入:n = 7
输出:4
解释:7 -> 8 -> 4 -> 2 -> 1
或 7 -> 6 -> 3 -> 2 -> 1

示例 3:

输入:n = 4
输出:2
思路1

既然题目都把三种可能给直接列出来了,那么最直观的思路其实就是dfs,也就是一个递归完事(有点像二叉树的题):

int integerReplacement(int n) {
    if (n == 1) {
        return 0;
    }
    if (n % 2 == 0) {
        return 1 + integerReplacement(n / 2);
    }
    return 1 + min(integerReplacement(n + 1), integerReplacement(n - 1));
}

当然这个时候有个小问题,会爆int…,不过可以通过把函数头里的参数n从int改为long long从而"重写"来逃课。
在这里插入图片描述

思路2

上一步的做法还可以进行进一步的改进。通过分析状态机我们可以发现,当 n n n是奇数时,下一步一定会变成偶数,因此实际上的话是可以把这两步合成给一步的,从而实现剪枝。即,当 n n n为奇数时,只可能通过两步操作变成 ( n + 1 ) / 2 (n+1)/2 (n+1)/2 ( n − 1 ) / 2 (n-1)/2 (n1)/2

进一步地,我们可以利用C++向下取整的特性,将 ( n + 1 ) / 2 (n+1)/2 (n+1)/2优化为 n / 2 + 1 n/2 + 1 n/2+1,将 ( n − 1 ) / 2 (n-1)/2 (n1)/2优化为 n / 2 n/2 n/2,这样可以防止在 n + 1 n+1 n+1的时候溢出(单纯是躲了个爆int的用例):

int integerReplacement(int n) {
    if (n == 1) {
        return 0;
    }
    if (n % 2 == 0) {
        return 1 + integerReplacement(n / 2);
    }
    return 2 + min(integerReplacement(n / 2), integerReplacement(n / 2 + 1));
}

在这里插入图片描述
因为有个剪枝所以相对而言会快那么一点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值