https://leetcode-cn.com/problems/integer-replacement/
题目
给定一个正整数 n n n ,你可以做如下操作:
如果
n
n
n是偶数,则用
n
/
2
n / 2
n/2替换
n
n
n 。
如果
n
n
n是奇数,则可以用
n
+
1
n + 1
n+1或
n
−
1
n - 1
n−1替换
n
n
n 。
n
n
n变为
1
1
1所需的最小替换次数是多少?
示例 1:
输入:n = 8
输出:3
解释:8 -> 4 -> 2 -> 1
示例 2:
输入:n = 7
输出:4
解释:7 -> 8 -> 4 -> 2 -> 1
或 7 -> 6 -> 3 -> 2 -> 1
示例 3:
输入:n = 4
输出:2
思路1
既然题目都把三种可能给直接列出来了,那么最直观的思路其实就是dfs,也就是一个递归完事(有点像二叉树的题):
int integerReplacement(int n) {
if (n == 1) {
return 0;
}
if (n % 2 == 0) {
return 1 + integerReplacement(n / 2);
}
return 1 + min(integerReplacement(n + 1), integerReplacement(n - 1));
}
当然这个时候有个小问题,会爆int…,不过可以通过把函数头里的参数n从int改为long long从而"重写"来逃课。
思路2
上一步的做法还可以进行进一步的改进。通过分析状态机我们可以发现,当 n n n是奇数时,下一步一定会变成偶数,因此实际上的话是可以把这两步合成给一步的,从而实现剪枝。即,当 n n n为奇数时,只可能通过两步操作变成 ( n + 1 ) / 2 (n+1)/2 (n+1)/2或 ( n − 1 ) / 2 (n-1)/2 (n−1)/2。
进一步地,我们可以利用C++向下取整的特性,将 ( n + 1 ) / 2 (n+1)/2 (n+1)/2优化为 n / 2 + 1 n/2 + 1 n/2+1,将 ( n − 1 ) / 2 (n-1)/2 (n−1)/2优化为 n / 2 n/2 n/2,这样可以防止在 n + 1 n+1 n+1的时候溢出(单纯是躲了个爆int的用例):
int integerReplacement(int n) {
if (n == 1) {
return 0;
}
if (n % 2 == 0) {
return 1 + integerReplacement(n / 2);
}
return 2 + min(integerReplacement(n / 2), integerReplacement(n / 2 + 1));
}
因为有个剪枝所以相对而言会快那么一点。