Domain Adaption3

3.Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment

github: Discriminative-Feature-Alignment
在这里插入图片描述

  先前的工作已尝试通过 classifier-induced discrepancies直接对齐潜在特征。 但是,通常无法通过这种直接特征对齐的方式来学习公共特征空间,特别是当存在较大的域gap时。 为了解决这个问题,我们引入了一种Gaussian-guided latent alignment方法(即DFA,Discriminative Feature Alignment),以在高斯先验分布的指导下对齐两个域的潜在特征分布。 以这种间接的方式,来自两个域的样本上的分布将被构建在公共的特征空间(即高斯先验的latent空间)上,这促进了更好的特征对齐。 为了有效地使目标域的latent分布与prior distribution对齐,我们还利用编码器-解码器的架构,并提出了一种unpaired L1-distance。

  1. DFA方法概览
      现有的UDA算法仅考虑 classifier-induced discrepancies来缓解domain shifts。对抗性和非对抗性的UDA方法的主要思想是——同时最小化源域分类误差classifier-induced源域与目标域之间的差异,隐式地将完成两个域潜在特征空间的对齐。然而仅以这种方式进行的领域自适应无法有效地学习公共特征空间
       因此,我们提出了discriminative feature alignment (DFA),在高斯先验的指导下对齐源域数据和目标数据的discriminative的latent特征分布。 具体地,特征提取器G将input samples编码到latent特征空间中;解码器D将一个latent feature vector或一个Gaussian random vector解码回图像。 来自源域和目标域的样本共享编码器(G)和解码器(D)的参数。 可以将D视为正则化的一种形式。 我们利用KL散度来鼓励源域样本的latent分布接近于高斯先验。(Lkld
      如果与源域类似,鼓励目标样本的latent分布接近高斯分布,从而实现两个域的分布对齐,这样做实际的效果不佳。所以本文通过减小解码器重构的(source、target)样本之间的unpaired L1-distance,以实现两个域的分布对齐,即使D(G(xs))和D(G(xt)之间的距离最小。本文将这种分布对齐方式称为distribution alignment loss。 我们进一步发现将D(G(xt))与D(zn)的距离最小化的效果更好。(Ldal
    在这里插入图片描述
    在这里插入图片描述

  2. 损失函数

    在这里插入图片描述
    在这里插入图片描述
    ③(Lcls)可以确保在先验latent特征空间上学习到源域的discriminative的特征。在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 将DFA应用到MCD方法中
    小王爱迁移系列之二十一:最大分类器差异的领域自适应(MCD_DA)
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

immortal12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值