概述
- 注意,返回的类型是整数,小数部分被舍去
分析
-
对于找x的平方根,我们很容易想到从[1, x)去尝试,即暴力求解
-
但是注意到[1,x)是一个有序数组,问题就变成了在一个有序数组寻找一个满足条件的值,那么容易想到二分法
-
因为返回的类型是整数,所以也会有找不到的情况,需要额外考虑
思路
二分思路?
略
当x的平方根为小数时,无法直接在整数数组中找到值,如何确定返回值呢?
-
首先,当我们二分找不到元素,失败时一定有
L > R
;这种情况下,可能是当
L==R
时,由于L移动引起的,也可能是由于R移动引起的,我们需要分一下L==R
的情况:- 如果由L向后移动引起,则说明
target > num[mid]
,但舍去小数位要返回的值应该就是num[mid]
,所以返回的值是R指向的元素 - 如果有R向前移动引起,则说明
target < num[mid]
,舍去小数位要返回的值应该比num[mid]
要小,所以返回的值是R指向的元素
- 如果由L向后移动引起,则说明
代码
class Solution {
public:
int mySqrt(int x) {
if (x == 1) return 1;
int L = 0, R = x / 2; // 优化一下,只要考虑[0, x/2]的数组
while (L <= R) {
int mid = (R - L) / 2 + L;
if (x == (long long)mid * mid ) return mid; // 注意类型转换,防止int溢出
else if ( x > (long long)mid * mid ) L = mid + 1;
else R = mid - 1;
}
return R; // 返回R
}
};