吴恩达老师深度学习跟随作业(三)--------- 深度学习的实用层面-1.初始化 2.正则化 3.梯度校验(IMUDGES)

参考博客 (https://blog.csdn.net/u013733326/article/details/79847918)
个人建议看他的好一些,我只是练习,过程中遇到的错误多看看原文下面评论

  • 初始化
###初始化模型

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets

import init_utils  #初始化


plt.rcParams['figure.figsize'] = (7.0, 4.0)  #设置绘图的默认大小
plt.rcParams['image.interpolation'] = 'nearst'
plt.rcParams['image.cmap'] = 'gray'


#读取 绘制数据
#train_X, train_Y, test_X, test_Y = init_utils.load_dataset(is_plot=True)
##plt.show()  #显示绘制图要去注释

#模型
def model(X,Y,learning_rate=0.01,num_iterations=5000,print_cost=True,initialization="he",is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0],15,10,5,1]

    #选择初始化参数的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    else :
        print("错误的初始化参数!程序退出")
        exit

    #开始学习
    for i in range(0,num_iterations):
        #前向传播
        a4 , cache = init_utils.forward_propagation(X,parameters)

        #计算成本
        cost = init_utils.compute_loss(a4,Y)

        #反向传播
        grads = init_utils.backward_propagation(X,Y,cache)

        #更新参数
        parameters = init_utils.update_parameters(parameters,grads,learning_rate)

        #记录成本
        if i % 1000 == 0:
            costs.append(cost)
            #打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))


    #学习完毕,绘制成本曲线
    if is_polt:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    #返回学习完毕后的参数
    return parameters

#初始化为零
def initialize_parameters_zeros(layers_dims):
    """
    将模型的参数全部设置为0

    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            bL - 偏置向量,维度为(layers_dims[L],1)
    """
    parameters = {}

    L = len(layers_dims) #网络层数

    for l in range(1,L):
        parameters["W" + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1]))
        parameters["b" + str(l)] = np.zeros((layers_dims[l],1))

        #使用断言确保我的数据格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l],1))

    return parameters


#测试初始化为0 的效果
'''
parameters = initialize_parameters_zeros([3, 2, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))  '''

"""
初始化为零的结果:
W1 = [[0. 0. 0.]
 [0. 0. 0.]]
b1 = [[0.]
 [0.]]
W2 = [[0. 0.]]
b2 = [[0.]]
"""
#初始化为零的训练结果
#parameters = model(train_X,train_Y,initialization="zeros",is_polt=True)
#结果 略

#预测结果
'''
print("xun lian ji")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("ceshiji")
predictions_test = init_utils.predict(test_X,test_Y,parameters)
'''

#随机初始化
def initialize_parameters_random(layers_dims):
    """
    :param layers_dims: 列表,模型的层数和对应每一层的节点的数量
    :return: parameters - 包含所有W和b的字典
    """
    np.random.seed(3)  # 指定随机种子
    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        #使用十倍放缩
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

#测试
"""
parameters = initialize_parameters_random([3, 2, 1])
print("w1=" + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
"""
"""
测试结果
w1=[[ 17.88628473   4.36509851   0.96497468]
 [-18.63492703  -2.77388203  -3.54758979]]
b1 = [[0.]
 [0.]]
W2 = [[-0.82741481 -6.27000677]]
b2 = [[0.]]
"""
"""
#实际运行结果
parameters = model(train_X, train_Y,initialization="random", is_polt=True)
print("训练集")
predictions_train = init_utils.predict(train_X, train_Y,parameters)
print("测试集")
pretictions_test = init_utils.predict(test_X,test_Y,parameters)

print(predictions_train)
print(pretictions_test)

#绘图
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
#结果略
"""

#抑梯度异常初始化
def initialize_parameters_he(layers_dims):
    """
    :param layers_dims:列表,模型的层数和对应每一层的节点的数量
    :return:parameters - 包含了所有W和b的字典
    """
    np.random.seed(3)
    parameters = {}
    L = len(layers_dims)

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) *\
        np.sqrt(2 / layers_dims[l -1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l],1))

    return parameters

#测试
'''
parameters = initialize_parameters_he([2, 4, 3, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))'''
#测试结果
'''
W1 = [[ 1.78862847  0.43650985]
 [ 0.09649747 -1.8634927 ]
 [-0.2773882  -0.35475898]
 [-0.08274148 -0.62700068]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.03098412 -0.33744411 -0.92904268  0.62552248]]
b2 = [[0.]] '''
#将参数初始化到1附近,实际运行
''''
parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)
'''
#绘图
'''
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
'''
#结果略

init_utils.py

# -*- coding: utf-8 -*-

#init_utils.py

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets


def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s

def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)

    return s

def compute_loss(a3, Y):

    """
    Implement the loss function

    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3

    Returns:
    loss - value of the loss function
    """

    m = Y.shape[1]
    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    loss = 1./m * np.nansum(logprobs)

    return loss

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()

    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    W4 = parameters["W4"]
    b4 = parameters["b4"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)
    z4 = np.dot(W4, a3) + b4
    a4 = sigmoid(z4)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3, z4, a4, W4, b4)

    return a4, cache

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()

    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3, z4, a4, W4, b4) = cache

    dz4 = 1. / m * (a4 - Y)
    dW4 = np.dot(dz4, a3.T)
    db4 = np.sum(dz4, axis=1, keepdims=True)

    dz3 = 1./m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims = True)

    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims = True)

    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims = True)

    gradients = {"dz4": dz4, "dW4": dW4, "db4": db4,
                 "dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

    return gradients

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent

    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients, output of n_model_backward

    Returns:
    parameters -- python dictionary containing your updated parameters
                  parameters['W' + str(i)] = ...
                  parameters['b' + str(i)] = ...
    """

    L = len(parameters) // 2 # number of layers in the neural networks

    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
        parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]

    return parameters

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.

    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model

    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0

    # print results
    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))

    return p

def load_dataset(is_plot=True):
    np.random.seed(1)
    train_X, train_Y = sklearn.datasets.make_circles(n_samples=300, noise=.05)
    np.random.seed(2)
    test_X, test_Y = sklearn.datasets.make_circles(n_samples=100, noise=.05)
    # Visualize the data
    if is_plot:
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral);
    train_X = train_X.T
    train_Y = train_Y.reshape((1, train_Y.shape[0]))
    test_X = test_X.T
    test_Y = test_Y.reshape((1, test_Y.shape[0]))
    return train_X, train_Y, test_X, test_Y

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    plt.show()

def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.

    Arguments:
    parameters -- python dictionary containing your parameters
    X -- input data of size (m, K)

    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3>0.5)
    return predictions
  • 正则化
#正则化

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets


import reg_utils   #正则化


train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)

#模型
def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1):
    """
    实现一个三层的神经网络
    :param X:输入的数据,维度为(2,要训练/测试的数量)
    :param Y: 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
    :param learning_rate:学习速率
    :param num_iterations:迭代的次数
    :param print_cost:是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
    :param is_plot:是否绘制梯度下降的曲线图
    :param lambd:正则化的超参数,实数
    :param keep_prob:随机删除节点的概率
    :return:parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layer_dims = [X.shape[0],20,3,1]

    #初始化参数
    parameters = reg_utils.initialize_parameters(layer_dims)

    #开始学习
    for i in range(0, num_iterations):
        #前向传播
        ##是否随机删节点
        if keep_prob == 1:
            #不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            #随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("参数错误,退出")
            exit()

        #计算成本
        ##是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        #反向传播
        ##可以同时使用L2正则化和随机删除节点

        ##两个参数的使用情况
        if(lambd == 0 and keep_prob == 1):
            ###不使用L2正则化 和 不使用随即删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0 and keep_prob == 1:
            ###使用L2正则化,不使用随即删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif lambd == 0 and keep_prob < 1:
            ###使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
        else:
            pass

         #更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        #记录 打印成本
        if i % 1000 == 0:
            ##记录成本
            costs.append(cost)
            if print_cost and i % 10000 == 0:
                print("di" + str(i) + "ci 迭代,成本值为:" + str(cost))

    #是否绘制成本曲线
    if is_plot\
            :
        plt.plot(cost)
        plt.ylabel('cost')
        plt.xlabel('iterations(x1,000)')
        plt.title("learning_rate = " + str(learning_rate))
        plt.show()

    return parameters

'''
#查看不使用正则化的模型效果
parameters = model(train_X, train_Y, is_plot=True)
print("训练集")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)
'''
#使用正则化
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现L2正则化计算成本
    :param a3: 正向传播的输出结果,维度为(输出节点数量,训练/测试数量)
    :param Y: 标签向量,与数据一一对齐,维度为(输出节点数量,训练/测试的数量)
    :param parameters: - 包含模型学习后的参数字典
    :param lambd:
    :return:cost  -  使用L2正则化计算出的正则化损失的值
    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    cross_entrepy_cost = reg_utils.compute_cost(A3, Y)
    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)
    cost = cross_entrepy_cost + L2_regularization_cost
    return cost

#当然,因为改变了成本函数,我们也必须改变向后传播的函数, 所有的梯度都必须根据这个新的成本值来计算。
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现添加了L2正则化的模型的后向传播
    :param X: 输入数据集,维度为(输入节点数量,数据集里面的数量)
    :param Y: 标签,维度为(输出节点数量,数据集里面的数量)
    :param cache:来自forward_propagation()的cache输出
    :param lambd:regularization超参数  实数
    :return:gradients 一个包含每个参数,激活值和预激活变量的梯度的字典
    """
    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

#使用正则化的模型结果
'''
parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)
print("使用正则化,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用正则化,测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)
'''

#随机删除节点
def forward_propagation_with_dropout(X, parameters, keep_prob):
    """
    实现具有随机舍弃节点的前向传播

    :param X: 输入数据集,维度为(2,示例数)
    :param parameters: 包含参数的字典
    :param keep_prob: 随即删除的概率
    :return: A3 - 最后的激活值,维度为(1,1),正向传播的输出
            cache - 储存了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    #下面的步骤1-4对应于上述的步骤1-4
    D1 = np.random.rand(A1.shape[0], A1.shape[1])  #步骤1:初始化矩阵D1 = np.random.rand(..., ...)
    D1 = D1 < keep_prob                            #步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值)
    A1 = A1 * D1                                   #步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A1 = A1 / keep_prob                            #步骤4:缩放未舍弃的节点(不为0)的值

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D2 = np.random.rand(A2.shape[0], A2.shape[1])  # 步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob                            # 步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值)
    A2 = A2 * D2                                    # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob                              # 步骤4:缩放未舍弃的节点(不为0)的值

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

#需要同时改变反向传播
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现随即删除模型的后向传播
    :param X: 输入数据集,维度为(2,示例数)
    :param Y: 标签,维度为(输出节点数量,示例数量)
    :param cache: 前向传播的cache输出
    :param keep_prob: 随机删除概率
    :return: gradients  一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 *= D2  #步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA2 /= keep_prob ## 步骤2:缩放未舍弃的节点(不为0)的值

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./ m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 *= D1  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA1 = dA1 / keep_prob   # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3":dW3, "db3":db3, "dA2":dA2,
                 "dZ2":dZ2, "dW2":dW2, "db2":db2, "dA1":dA1,
                 "dZ1":dZ1, "dW1":dW1, "db1":db1}

    return gradients

#测试随机删除节点的模型
parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)
print("使用随机删除节点,训练集")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用随机删除节点,测试集")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75, 0.4])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x:reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

reg_utils.py

# -*- coding: utf-8 -*-

#reg_utils.py

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s

def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)

    return s


def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network

    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])

    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """

    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

        #assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        #assert(parameters['W' + str(l)].shape == layer_dims[l], 1)

    return parameters

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()

    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

    return a3, cache



def compute_cost(a3, Y):
    """
    Implement the cost function

    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3

    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]

    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1./m * np.nansum(logprobs)

    return cost

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()

    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache

    dz3 = 1./m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims = True)

    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims = True)

    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims = True)

    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

    return gradients

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent

    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradien  ts, output of n_model_backward

    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters['W' + str(i)] = ... 
                  parameters['b' + str(i)] = ...
    """

    L = len(parameters) // 2 # number of layers in the neural networks

    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
        parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]

    return parameters




def load_2D_dataset(is_plot=True):
    data = sio.loadmat('data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T
    if is_plot:
        plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y) , s=40, cmap=plt.cm.Spectral)

    return train_X, train_Y, test_X, test_Y

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.

    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model

    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0

    # print results
    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))

    return p

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    plt.show()

def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.

    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)

    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3>0.5)
    return predictions

  • 梯度校验
#梯度校验
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import gc_utils     #第三部分,梯度校验
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

#一维线性
def forward_propagation(x, theta):
    """
    实现图中呈现的线性前向传播(计算J)(j(theta) = theta * x)
    :param x:一个实值的输入
    :param theta: 参数,也是一个实数
    :return: J -- 函数J的值
    """
    J = np.dot(theta, x)
    return J

def backward_parpagation(x, theta):
    """
    计算J相对于θ的导数
    :param x:一个实数输入
    :param theta:参数,也是实数
    :return:dtheta - 相对于θ的成本梯度
    """
    dtheta = x
    return dtheta

def gradient_check(x, theta, epsilon=1e-7):
    """
    实现反向传播
    :param x: 实数输入
    :param theta: 参数
    :param epsilon: 使用公式计算输入的微小偏移以计算近似梯度
    :return:difference -- 近似梯度和后向传播梯度之间的差异
    """

    #使用导数定义公式计算gradapprox
    thetaplus = theta + epsilon
    thetaminus = theta - epsilon
    J_plus = forward_propagation(x, thetaplus)
    J_minus = forward_propagation(x, thetaminus)
    gradapprox = (J_plus - J_minus) / (2 * epsilon)

    #检查gradapprox是否足够接近backward_propagation() 的输出
    grad = backward_parpagation(x, theta)

    numerator = np.linalg.norm(grad - gradapprox)
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
    difference = numerator / denominator

    if difference < 1e-7:
        print("梯度检查:梯度正常")
    else:
        print("梯度检查,梯度超出阈值")

    return difference

#测试gradient_check
'''
x, theta = 2, 4
difference = gradient_check(x, theta)
print(str(difference))  '''

#高维
def forward_propagation_n(X, Y, parameters):
    """
    实现高维的前向传播  并计算成本
    :param X:训练集为m个例子
    :param Y:m个示例的标签
    :param parameters:包含参数的字典
    :return:cost - 成本函数(logistic)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    Z1 = np.dot(W1, X) + b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = gc_utils.sigmoid(Z3)

    #计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache

def backward_propagation_n(X, Y, cache):
    """
    实现反向传播
    :param X: 输入数据点(输入节点数量,1)
    :param Y: 标签
    :param cache: 前向传播的cache
    :return: gradients -   一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1. / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {
        "dZ3":dZ3, "dW3":dW3, "db3":db3,
        "dA2":dA2, "dZ2":dZ2, "dW2":dW2, "db2":db2,
        "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1
    }

    return gradients

def gradient_check_n(parameters, gradients, X, Y, epsilon=1e-7):
    """
    检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度
    :param parameters:包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典
    :param gradients:反向传播返回的字典
    :param X:输入数据点,维度为(输入节点数量, 1)
    :param Y:标签
    :param epsilon:计算输入的微小偏移计算近似梯度
    :return:difference - 近似梯度和后向传播梯度之间的差异
    """
    #初始化参数
    parameters_values, keys = gc_utils.dictionary_to_vector(parameters)
    grad = gc_utils.gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))

    #计算gradapprox
    for i in range(num_parameters):
        #计算J_plus[i] 输入:"parameters_values,epsilon".输出=”J_plus[i]“
        thetaminus = np.copy(parameters_values)
        thetaminus[i][0] = thetaminus[i][0] + epsilon
        J_minus[i], cache = forward_propagation_n(X, Y, gc_utils.vector_to_dictionary(thetaminus))

        #计算gradapprox[i]
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)

    #通过计算差异比较gradapprox和后向传播梯度
    numerator = np.linalg.norm(grad - gradapprox)
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
    difference = numerator / denominator

    if difference < 1e-7:
        print("梯度检查:梯度正常")
    else:
        print("梯度检查:梯度超出阈值")

    return difference

gc_utils.py

import numpy as np
import matplotlib.pyplot as plt

def sigmoid(x):
    s = 1/(1 + np.exp(-x))
    return s

def relu(x):
    s = np.maximum(0, x)
    return s

def dictionary_to_vector(parameters):
    #从满足特定形状要求的单个向量展开所有参数字典
    keys = []
    count = 0
    for key in ["W1", "b1", "W2", "b2", "W3", "b3"]:

        # 平参数
        new_vector = np.reshape(parameters[key], (-1, 1))
        keys = keys + [key] * new_vector.shape[0]

        if count == 0:
            theta = new_vector
        else:
            theta = np.concatenate((theta, new_vector), axis=0)
        count = count + 1

    return theta, keys

def vector_to_dictionary(theta):
    """
    从满足特定形状要求的单个向量展开所有参数字典。
    """
    parameters = {}
    parameters["W1"] = theta[:20].reshape((5,4))
    parameters["b1"] = theta[20:25].reshape((5,1))
    parameters["W2"] = theta[25:40].reshape((3,5))
    parameters["b2"] = theta[40:43].reshape((3,1))
    parameters["W3"] = theta[43:46].reshape((1,3))
    parameters["b3"] = theta[46:47].reshape((1,1))

    return parameters

def gradients_to_vector(gradients):
    """
    将所有梯度字典滚动到一个向量中,以满足特定的形状要求。
    """

    count = 0
    for key in ["dW1", "db1", "dW2", "db2", "dW3", "db3"]:
        # flatten parameter
        new_vector = np.reshape(gradients[key], (-1,1))

        if count == 0:
            theta = new_vector
        else:
            theta = np.concatenate((theta, new_vector), axis=0)
        count = count + 1

    return theta

参考文章里到这里就没了,最后的验证就没有,很难受

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值