网络拓扑模型在故障定位系统中的应用——论文分析学习
网络拓扑模型作用
为数据挖掘服务——通过网络拓扑模型进行约束使挖掘过程更有效率、挖掘结果更加准确。
实现针对某个网元, 能够从模型中查找出与其存在拓扑连接的所有网元或者大部分网元, 并存储于某种数 据结构中, 为其他模块处理做准备。
网络拓扑模型在两个阶段的使用
1、预处理阶段:通过网络拓扑关系过滤掉不相关的告警数据。即针对原始告警数据中的某条待分析的告警, 通过此告警的网元在拓扑模型中找到与该网元具有拓扑关系的所有网元或者大部分网元, 将这些连接在一起的网元提取出来, 存放在某种数据结构中以网元的形式存储, 形成一个网元簇, 然后将预设的时间窗口内原始告警数据的网元与网元簇进行匹配, 将不属于该网元簇的告警过滤掉,最后只留下属于网元簇内网元的告警, 然后再用数据挖掘算法对这些数据进行挖掘。
2、关联规则挖掘阶段:由项频繁项集产生项候选项集时,通过网络拓扑模型来过滤掉不相关的候选项集。例如, 从项频繁项集产生项候选项集, 对每一项与其他项进行联接时, 首先还是根据该项的网元从拓扑模型中找到相互连接的网元, 形成网元簇, 这与上面第一种应用方式的过程一样。然后判断该项与待联接的项是否同出现在网元簇中, 如果没有, 则这两项不进行联接, 否则就将这两项联接后放入项候选频繁项集中。从项频繁集产生项候选频繁集过程也与此类似
移动通信网络拓扑模型
子网分别建立抽象模型
移动通信网络网元划分为三类网元簇:公共连接网元簇、话务网网元簇和特殊网元簇, 并生成三个网元拓扑文件公共连接网元文件、话务网网元簇拓扑文件和特殊网元簇拓扑文件。
关联规则挖掘算法根据返回的或对频繁模式进行筛选, 从而过滤掉不存在告警传播条件的错误频繁模式。由于一算法采用树结构进行挖掘, 在完成树的生成后就可以一步生成频繁模式, 所以一算法在挖出频繁模式后将它们依次进行判定是否符合网络拓扑约束, 然后将不符合的模式从最终的频繁模式集中删除。
由于网元簇的划分可能不能涵盖所有的告警传播路径, 或者不能完整的覆盖一个告警传播路径, 因此增加一个可控参数一匹配模糊度, 来降低现有的网元簇与过滤掉公共连接网元后的网元序列的匹配精度。匹配模糊度的缺省值为, 表明需要精确的匹配, 可以适当降低这个参数值, 如降为, 此时, 若过滤掉公共联接网元后的输入序列与一个网元簇的匹配度达到, 网元拓扑查询就返回true 。
网元拓扑查找算法主要分为三个过程, 过滤公共连接网元, 判断过滤后的序列是否被特殊网元簇包含, 如果不被包含, 判断过滤
后的序列是否被话务网网元簇包含。
关联规则挖掘技术
关联规则的基本概念
寻找给定数据集中数据项之间的有趣的关联或者相关关系。
关联规则揭示了数据项之间的未知的依赖关系, 根据所挖掘的关联关系, 可以从一个数据对象信息来推断另一个数据对象的信息。
关联规则:支持度和置信度
关联规则挖掘分为两步发现频繁项目集和生成关联规则
关联规则挖掘算法:Apriori算法的改进系列算法和其它种类的算法