《误差理论》——绪论

绪论

本节主要讲解了《误差理论》中一些较为基础的概念和误差的简单分类,以及一些数据计算时的规则

1、误差:测得值与被测量的真值之间的差

误差 = 测得值 − 真值 误差=测得值-真值 误差=测得值真值

2、绝对误差:某量值的测得值和真值之差

绝对误差 = 测得值 − 真值 绝对误差=测得值-真值 绝对误差=测得值真值

3、真值 ≈ \approx 真值-测得值;修真值=真值-测得值

4、相对误差:绝对误差与被测量的真值之比值

相对误差 = 绝对误差 真值 ≈ 绝对误差 测得值 相对误差=\frac{绝对误差}{真值}\approx\frac{绝对误差}{测得值} 相对误差=真值绝对误差测得值绝对误差

5、引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为坟墓,所得的比值

引用误差 = 示值误差 测量范围上限 引用误差=\frac{示值误差}{测量范围上限} 引用误差=测量范围上限示值误差

6、误差产生的方面

(1)测量装置误差

a.标准量具误差;b.仪器误差;c.附件误差

(2)环境误差

(3)方法误差

(4)人员误差

7、误差分类

按照误差的特点和性质,误差可分为系统误差随机误差粗大误差三类

(1)系统误差

在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变的误差,或在条件改变时,按一定规律变化的误差

系统误差又可分为

a.按对误差的掌握程度分类:

  • 已定系统误差:指误差绝对值和符号以确定的系统误差
  • 未定系统误差:指误差绝对值和符号未确定的系统误差,但通常可估计出误差范围

b.按出现规律分类:

  • 不变系统误差:指误差绝对值和符号固定的系统误差
  • 变化系统误差:指误差绝对值和符号变化的系统误差。按期规律变化,又可分为线性系统误差周期性系统误差复杂规律系统误差等。

(2)随机误差

在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差

(3)粗大误差(寄生误差)

超出在规定条件下预期的误差

8、精度

反映测量结果与真值接近程度的量。可用误差大小表示精度高低,精度可分为

(1)准确度

反映测量结果中系统误差的影响程度

(2)精密度

反映测量结果中随机误差的影响程度

(3)精确度

反映测量结果中随机误差系统误差综合的影响程度,其定量特获赠可用测量的不确定度(或极限误差)来表示

9、数字舍入规则

  • 若舍去部分的数值大于部分的末位的半个单位,则末位加1
  • 若舍去部分的数值小于部分的末位的半个单位,则末位不变
  • 若舍去部分的数值等于部分的末位的半个单位,则末位凑成偶数,即当末位为偶数时,则末位不变末位为奇数时,则末位加1

以上规则可总结为平时四舍五入,遇半末位凑偶数以下为一些例题:
3.14159 ≈ 3.142 3.14159\approx3.142 3.141593.142 2.71729 ≈ 2.717 2.71729\approx2.717 2.717292.717 4.51050 ≈ 4.510 4.51050\approx4.510 4.510504.510 4.51150 ≈ 4.512 4.51150\approx4.512 4.511504.512 6.388501 ≈ 6.389 6.388501\approx6.389 6.3885016.389

10、数据运算规则

  • 近似数加减运算时,各运算数据以小数位数最少的数据为准其余数据可多去一位小数,但最后的结果的小数位数应与小数位数最少的数据小数位数相同。例:
    2643.0 + 987.7 + 4.187 + 0.2354 2643.0+987.7+4.187+0.2354 2643.0+987.7+4.187+0.2354 ≈ 2643.0 + 987.7 + 4.19 + 0.24 \approx2643.0+987.7+4.19+0.24 2643.0+987.7+4.19+0.24 = 3635.13 ≈ 3635.1 =3635.13\approx3635.1 =3635.133635.1
  • 近似数乘除运算时,各运算数据以有效位数最少的数据为准其余数据要比有效位数最少的数据位数多取一位数字,但最后的结果的有效位数应与有效位数最少的数据小数位数相同。例:
    15.13 × 4.125450 15.13\times4.125450 15.13×4.125450 ≈ 15.13 × 4.1254 \approx15.13\times4.1254 15.13×4.1254 = 62.417302 ≈ 62.42 =62.417302\approx62.42 =62.41730262.42
  • 近似数平方或开方运算按乘除运算处理
  • 近似数对数运算时,n位有效数字的数据应用n位对数表或用n+1位对数表
  • 三角函数运算中,所取函数值的位数虽角度误差的减小而增大,其对用关系如下:
角度误差(")函数值位数
105
16
0.17
0.018
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三天后的承诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值