绪论
本节主要讲解了《误差理论》中一些较为基础的概念和误差的简单分类,以及一些数据计算时的规则
1、误差:测得值与被测量的真值之间的差
误差 = 测得值 − 真值 误差=测得值-真值 误差=测得值−真值
2、绝对误差:某量值的测得值和真值之差
绝对误差 = 测得值 − 真值 绝对误差=测得值-真值 绝对误差=测得值−真值
3、真值 ≈ \approx ≈真值-测得值;修真值=真值-测得值
4、相对误差:绝对误差与被测量的真值之比值
相对误差 = 绝对误差 真值 ≈ 绝对误差 测得值 相对误差=\frac{绝对误差}{真值}\approx\frac{绝对误差}{测得值} 相对误差=真值绝对误差≈测得值绝对误差
5、引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为坟墓,所得的比值
引用误差 = 示值误差 测量范围上限 引用误差=\frac{示值误差}{测量范围上限} 引用误差=测量范围上限示值误差
6、误差产生的方面
(1)测量装置误差
a.标准量具误差;b.仪器误差;c.附件误差
(2)环境误差
(3)方法误差
(4)人员误差
7、误差分类
按照误差的特点和性质,误差可分为系统误差、随机误差和粗大误差三类
(1)系统误差
在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变的误差,或在条件改变时,按一定规律变化的误差
系统误差又可分为
a.按对误差的掌握程度分类:
- 已定系统误差:指误差绝对值和符号以确定的系统误差
- 未定系统误差:指误差绝对值和符号未确定的系统误差,但通常可估计出误差范围
b.按出现规律分类:
- 不变系统误差:指误差绝对值和符号固定的系统误差
- 变化系统误差:指误差绝对值和符号变化的系统误差。按期规律变化,又可分为线性系统误差、周期性系统误差和复杂规律系统误差等。
(2)随机误差
在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差
(3)粗大误差(寄生误差)
超出在规定条件下预期的误差
8、精度
反映测量结果与真值接近程度的量。可用误差大小表示精度高低,精度可分为
(1)准确度
反映测量结果中系统误差的影响程度
(2)精密度
反映测量结果中随机误差的影响程度
(3)精确度
反映测量结果中随机误差和系统误差综合的影响程度,其定量特获赠可用测量的不确定度(或极限误差)来表示
9、数字舍入规则
- 若舍去部分的数值大于部分的末位的半个单位,则末位加1
- 若舍去部分的数值小于部分的末位的半个单位,则末位不变
- 若舍去部分的数值等于部分的末位的半个单位,则末位凑成偶数,即当末位为偶数时,则末位不变;末位为奇数时,则末位加1
以上规则可总结为平时四舍五入,遇半末位凑偶数以下为一些例题:
3.14159
≈
3.142
3.14159\approx3.142
3.14159≈3.142
2.71729
≈
2.717
2.71729\approx2.717
2.71729≈2.717
4.51050
≈
4.510
4.51050\approx4.510
4.51050≈4.510
4.51150
≈
4.512
4.51150\approx4.512
4.51150≈4.512
6.388501
≈
6.389
6.388501\approx6.389
6.388501≈6.389
10、数据运算规则
- 在近似数加减运算时,各运算数据以小数位数最少的数据为准,其余数据可多去一位小数,但最后的结果的小数位数应与小数位数最少的数据小数位数相同。例:
2643.0 + 987.7 + 4.187 + 0.2354 2643.0+987.7+4.187+0.2354 2643.0+987.7+4.187+0.2354 ≈ 2643.0 + 987.7 + 4.19 + 0.24 \approx2643.0+987.7+4.19+0.24 ≈2643.0+987.7+4.19+0.24 = 3635.13 ≈ 3635.1 =3635.13\approx3635.1 =3635.13≈3635.1 - 在近似数乘除运算时,各运算数据以有效位数最少的数据为准,其余数据要比有效位数最少的数据位数多取一位数字,但最后的结果的有效位数应与有效位数最少的数据小数位数相同。例:
15.13 × 4.125450 15.13\times4.125450 15.13×4.125450 ≈ 15.13 × 4.1254 \approx15.13\times4.1254 ≈15.13×4.1254 = 62.417302 ≈ 62.42 =62.417302\approx62.42 =62.417302≈62.42 - 近似数平方或开方运算,按乘除运算处理
- 近似数对数运算时,n位有效数字的数据应用n位对数表或用n+1位对数表
- 三角函数运算中,所取函数值的位数虽角度误差的减小而增大,其对用关系如下:
角度误差(") | 函数值位数 |
---|---|
10 | 5 |
1 | 6 |
0.1 | 7 |
0.01 | 8 |