BP神经网络优化PID控制器的参数的源代码

本文通过MATLAB代码展示了如何使用BP神经网络优化PID控制器参数,以适应非线性系统的期望输出。仿真结果显示,控制效果良好,期望值与原始值接近重合,偏差和控制量U变化得当。
摘要由CSDN通过智能技术生成
<textarea readonly="readonly" name="code" class="c++">
%% 基于bp神经网络pid控制程序
%% BP based PID Control 
%% 清除环境变量和命令行的内容
clear all; 
close all; 
clc;
%% 参数的设置,正弦信号与阶跃信号对应的权值的初始设定 
xite=0.25; % 学习速率
alfa=0.05; % 惯性系数
S=2; %Signal type 
IN=4;H=5;Out=3; % 输入层、隐层和输出层神经元的个数
if S==1  %如果为阶跃信号,那么输入层到隐层权值如下所示,这里指定连接权值的初始值。
   wi=[-0.6394   -0.2696   -0.3756   -0.7023; 
       -0.8603   -0.2013   -0.5024   -0.2596; 
       -1.0749    0.5543   -1.6820   -0.5437; 
       -0.3625   -0.0724   -0.6463   -0.2859; 
       0.1425    0.0279   -0.5406   -0.7660]; 
   %wi=0.50*rands(H,IN); % 输入层到隐层权值随机取值矩阵(5χ4)
   wi_1=wi;wi_2=wi;wi_3=wi; 
   % 隐层到输出层权值的取值矩阵(3χ5)
   wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325;  
       -0.1146 0.2949 0.8352  0.2205  0.4508; 
       0.7201 0.4566 0.7672  0.4962  0.3632]; 
   %wo=0.50*rands(Out,H); 
   wo_1=wo;
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值