R语言基础——reshape2包

简介

1. rehsape2包

reshape2包是由Hadley Wickham开发的一个R包,从其命名不难看出,reshape2包可以对数据重塑,就像炼铁一样,先融化数据,再重新整合数据,它的主要功能函数为cast()melt(),实现了长数据格式与宽数据格式之间的相互转换。
比如说,如果你要做回归等等的多变量分析,用到glm等等,那必然要用宽格式数据;再比如说,如果你要到ggplot里面画图,按照Hadley大神的可视化语法思想,多半是要用长格式的数据的。

2. 长宽数据格式

宽数据格式:每个变量单独成一列。
长数据格式:变量ID没有单独成列,而是整合在同一列。
概念难以理解? 这里以airquality数据集为例:
在这里插入图片描述

函数学习

reshape2包的学习主要以官方推荐的空气质量数据集(airquality)为例。

首先载入数据集并查看数据项目

data("airquality")
head(airquality)
knitr::kable(head(airquality),align = "c")
OzoneSolar.RWindTempMonthDay
411907.46751
361188.07252
1214912.67453
1831311.56254
NANA14.35655
28NA14.96656

为了便于后续的处理,我们将列名转换为小写

colnames(airquality)
# [1] "Ozone"   "Solar.R" "Wind"    "Temp"    "Month"   "Day"
names(airquality) <- tolower(names(airquality))
names(airquality) 
# [1] "ozone"   "solar.r" "wind"    "temp"    "month"   "day"
1. melt函数

官方介绍
在这里插入图片描述
从官方文档可以看出,melt()函数可以将一个对象“融化”为一个数据框。
对于不同的数据结构,melt()函数有不同的用法,如:
(1) 数据框(data frame):melt.data.frame()
(2) 数组(array):melt.array()melt.matrix()melt.table()
(3) 列表(list):melt.list()
(4) 向量(vector):melt.default()

用法
由于实际处理数据时,数据框(data frame)使用较为普遍,所以在此以数据框为例。

melt(
  data,
  id.vars,
  measure.vars,
  variable.name = "variable",
  na.rm = FALSE,
  value.name = "value",
  factorsAsStrings = TRUE
)

参数详解
id.vars : ID变量的向量,可以是整数(变量位置)或字符串(变量名)。如果为空,将使用所有的变量。

measure.vars : 测量变量的向量。可以是整数(变量位置)或字符串(变量名称)。如果为空,将使用所有测量变量。

variable.name : 用于存储测量变量名的变量名。

na.rm : 逻辑值,是否移除数据集中的NA。

value.name : 用于存储值的变量的名称。

factorsAsStrings : 逻辑值,控制因子型变量是否转换为字符型。

aml1 <- melt(airquality, id.vars=c("month", "day"))
head(aml1)

在这里插入图片描述

aml2 <- melt(airquality, id.vars =c("month", "day")value.name = "my value")
head(aml2)

黄色背景展示了相较于上一步的不同
在这里插入图片描述

aml3 <- melt(airquality, id.vars =c("month", "day"),value.name = "my value",na.rm = T)
head(aml3)

可以发现,NA值所在的行被删除了!
在这里插入图片描述

aml4 <- melt(airquality, id.vars =c("month", "day"),value.name = "my value",na.rm = T,variable.name = "my variable")
head(aml4)

黄色背景展示了相较于上一步的不同
在这里插入图片描述

aml5 <- melt(airquality, id.vars =c("month", "day"),value.name = "my value",na.rm = T,variable.name = "my variable",measure.vars = "temp")
head(aml5)

黄色背景展示了相较于上一步的不同;measure.vars参数能够选择某一列,或者除id.vars之外所有列作为variable。
在这里插入图片描述

接下来,我们再对列表数据的处理简单讲解。

官方介绍
在这里插入图片描述
melt.list()函数能够递归的拆分列表元素。

参数详解
level : 用于设置标签,默认值为1。

list1 <- as.list(c(1:10, c(NA,2,3,4)))
list1

在这里插入图片描述

melt(list1)

在这里插入图片描述

names(list1) <- letters[1:14]
melt(list1)

在这里插入图片描述

如果列表包含矩阵

a <- list(matrix(1:4, ncol=2), matrix(1:6, ncol=2))
a
melt(a)

在这里插入图片描述
在这里插入图片描述

其他的melt函数使用方法此处不再赘述。

2. cast函数
  • cast()函数具有两种形式:
    • dcast() :输出为数据框
    • acast() :输出为向量、矩阵、数组

官方介绍
在这里插入图片描述

2.1 dcast()函数

用法

dcast(
  data,
  formula,
  fun.aggregate = NULL,
  ...,
  margins = NULL,
  subset = NULL,
  fill = NULL,
  drop = TRUE,
  value.var = guess_value(data)
)

参数介绍
formula : cast()函数的公式格式如下:x_variable + x_2 ~ y_variable + y_2 ~ z_variable ~ … ;"…“表示公式中未使用的所有其他变量;”."代表没有变量。

fun.aggregate : 聚合函数,如果变量不能识别每个输出单元的单个观察值时需要设置此参数。如mean,sum等。

margins : 变量名的向量(可以包括“grand_col”和“grand_row”)用来计算其边距,值为TRUE时计算所有边距。不能被追加的变量都将被悄悄地删除。

subset: 用于取子集。

drop: 错失的组合保留还是删除。

fill: 用于填补缺失值的值。

# 首先将airquality数据框转化为长数据
data <- melt(airquality, id=c("month", "day"), na.rm=T)
dcs1 <- dcast(data, month+day ~ variable)
head(dcs1)

在这里插入图片描述
可以看出,dcs1与airquality完全一致。

dcs2 <- dcast(data, month ~ variable, mean)  # average effect of month
dcs2

在这里插入图片描述

dcs3 <- dcast(data, month ~ variable, mean, margins = c("month", "variable"))
dcs3

黄色标记处展示了与之前结果的差异。
在这里插入图片描述

2.2 acast()函数

用法与dcsat()函数类似
acsat()函数用法以ChickWeight数据集为例介绍。

# 载入数据集
data(ChickWeight)
head(ChickWeight)
# weight time chick diet
1     42    0     1    1
2     51    2     1    1
3     59    4     1    1
4     64    6     1    1
5     76    8     1    1
6     93   10     1    1
# 首先将数据集列名转换为小写
names(ChickWeight) <- tolower(names(ChickWeight))
colnames(ChickWeight)
# [1] "weight" "time"   "chick"  "diet"  
# 构建数据集
chick <- melt(ChickWeight, id=2:4, na.rm=T)
head(chick)

在这里插入图片描述
这里开始acast()函数使用介绍:

ac1 <- acast(chick, diet ~ time, mean) # average effect of diet & time
ac1

ac1矩阵的行为diet,列为time
在这里插入图片描述

ac2 <- acast(chick, time ~ diet, length)
head(ac2)

ac2表示的时在不同的饲养天数下,小鸡食物不同时的数据大小
在这里插入图片描述

library(plyr) # 为了使用".",引用变量
ac3 <- acast(chick, chick ~ time, mean, subset = .(time < 10 & chick < 20))
ac3

使用subset参数对数据集进行筛选
在这里插入图片描述

as4 <- acast(chick, chick ~ time ~ diet) # 生成三维数组
as4

在这里插入图片描述
当然,acast()函数换有很多其他的用法,有待在实际运用中去探索。

3. 其他函数
3.1 add_margins()函数
  • 该函数的实际价值目前未知,仅以简单的例子列出,若有小伙伴了解,请在下方留言!
data <- data.frame(a = c(1:5),b = c(6:10),c = c('a','b','c','d','e'))
rownames(data) <- c('ass','xxx','ccc','fff','rr')
data1 <- add_margins(data,vars = "c")
View(data)
View(data1)

在这里插入图片描述
在这里插入图片描述

3.2 recast ()函数

一步操作进行melt和dcast,相当于整合了数据“融化”和“整合”两步。

# french_fries为reshape2包自带的数据集
head(french_fries)
 time treatment subject rep potato buttery grassy rancid painty
61    1         1       3   1    2.9     0.0    0.0    0.0    5.5
25    1         1       3   2   14.0     0.0    0.0    1.1    0.0
62    1         1      10   1   11.0     6.4    0.0    0.0    0.0
26    1         1      10   2    9.9     5.9    2.9    2.2    0.0
63    1         1      15   1    1.2     0.1    0.0    1.1    5.1
27    1         1      15   2    8.8     3.0    3.6    1.5    2.3
recast(french_fries, time ~ variable, id.var = 1:4)

在这里插入图片描述

3.3 melt_check()函数

这个函数的主要目的是在数据“融化”之前,检查数据集是否适合于“融化”,返回标识变量和测量变量。
有兴趣可以查看官方文档学习

3.4 colsplit()函数

相较于 strsplit()函数,个人感觉此函数功能更加强大,下面请看具体的例子。

x <- c('x_1','a_1','z_1')
strsplit(x,split = '_',fixed = T)
[[1]]
[1] "x" "1"

[[2]]
[1] "a" "1"

[[3]]
[1] "z" "1"
colsplit(string = x,pattern = "_", names = c('str','num'))
 str num
1   x   1
2   a   1
3   z   1

通过上面的例子,是不是更加倾向于colsplit()函数呢?当然, strsplit()函数自然有它的方便之处。

此外,reshape2包还有一个函数,是parse_formula()函数,它的主要功能是对cast的表达式格式进行转换;三个数据集,分别是french_fries、smiths和tips数据集,详细内容请阅读官方文档,或者通过?smiths进行查看。


  • ##侵权请联系作者删除!

参考文件

[1] reshape2包官方参考文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值