离线安装pytorch及显卡驱动对应版本的cuda toolkit

本文详细介绍了如何从清华大学镜像源下载适用于特定CUDA版本的PyTorch及相关包,并提供了离线安装步骤及测试方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、下载各类包

 

清华源地址

https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/?C=M&O=D

显卡驱动对应版本的cuda toolkit

个人显卡驱动为442.50,因此下载的是:

pytorch-1.5.1-py3.7_cuda102_cudnn7_0.tar.bz2

torchvision-0.7.0-py37_cu102.tar.bz2

下载成功之后放到anaconda3\pkgs文件夹下,也就是放各类包的地方

2、安装

conda install --offline pytorch-1.6.0-py3.7_cuda101_cudnn7_0.tar.bz2

conda install --offline torchvision-0.7.0-py37_cu101.tar.bz2

3、测试

import torch

print(torch.__version__)

print(torch.cuda.is_available())

print(torch.cuda_version)

附:在我自己安装成功之前,遇到了一个问题。

我最先下载的是pytorch-1.5.1-py3.7_cuda101_cudnn7_0.tar.bz2,但是安装成功之后,不能Import torch,但是conda list会显示有这个包,不过在包后面会有(unknown)。按道理讲,高版本应该向下兼容的啊,我高版本的能用,为啥低版本的不能呢?有没有大神指教指教!

### 如何根据系统配置选择合适的CUDA版本安装PyTorch 为了确保 PyTorch 能够正常运行于 CUDA 架构之上,必须仔细考虑 Python 版本CUDA 驱动程序以及硬件的支持情况。以下是具体方法: #### 1. 确定显卡支持的最高 CUDA 版本 每种 NVIDIA 显卡都有其支持的最大 CUDA 计算能力[^1]。可以通过查询 GPU 的计算能力(Compute Capability),并参照官方文档来确认该显卡能够兼容的最新 CUDA 版本。 #### 2. 安装与操作系统匹配的驱动程序 NVIDIA 提供的不同版本驱动对特定 CUDA 工具包存在依赖关系。因此,在决定 CUDA 版本之前,请先更新到适合当前操作系统的稳定版 NVIDIA 驱动,并验证它所支持的 CUDA 版本范围[^2]。 #### 3. 参考 PyTorchCUDA对应PyTorch 对不同版本CUDA 支持有限制条件。例如,当使用 Conda 或 Pip 进行离线安装时,需严格遵循预编译好的二进制文件中的组合规则。如 `conda install --offline pytorch-1.7.0-py3.8_cuda11.0.221_cudnn8.0.3_0.tar.bz2` 中指定了具体的 CUDA 和 cuDNN 子版本号[^3]。 #### 4. 使用推荐方式简化流程 如果不确定最佳搭配方案,则可以利用 Anaconda 渠道自动处理这些复杂性;或者访问 [PyTorch官网](https://pytorch.org/get-started/locally/) ,通过交互界面输入个人环境参数后获取定制化命令字符串用于一键部署所需组件集合。 ```bash # 示例:基于Conda的一键式安装语句 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` #### 注意事项 即使选择了低于设备上限的 CUDA 版本也可能因缺乏某些特性而影响性能表现。另外需要注意的是,随着时间推移,较老的 CUDA/cuDNN 组合可能不再被后续发布的框架完全支持。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值