很多人配置环境就是直接安装三件套,而对于版本管理不是很清楚。在开发初期,这样做没什么问题。但是如果服务器多人使用,或者复现代码多(pytorch版本和cuda版本是互相依赖的),就需要更进一步的版本管理方法。这里将详细介绍用于深度学习或者CPP开发的CUDA版本管理方式。
在配置环境前,首先需要明确自己的需求。一般来说,CUDA将会被用于:
- PyTorch的GPU版本
- CUDA的C++开发
- CUDA的Python开发
对于使用Python进行的开发,推荐在linux上使用Docker,Windows上使用anaconda。对于C++开发,只使用方法一手动管理版本即可,无须安装anaconda和docker。请注意,以下的方法选择其一即可,混着用容易把自己搞乱了。
下面是目录,按需要跳转:
基础知识
CUDA是基于驱动运行的,所以安装显卡驱动必不可少。这一步非常简单,在linux和windows上都比较好做。这里暂时跳过。
我们使用什么版本cuda的,取决于要使用的PyTorch版本。在配置环境前,首先需要明确自己的需求。
pip的版本管理很混乱,在每次使用的过程中都要小心,哪些包的版本被修改了。因此建议对于版本跨度大的包,使用conda等虚拟环境隔离。
GPU运算的环境配置流程
- 安装NVIDIA驱动
- 安装Docker(可选)
- 安装anaconda(可选)
- 配置CUDA、cuDNN
- 安装pytorch
检查驱动安装
注意,这里的CUDA版本是假的,默认显示一个数值。还是需要继续安装~
nvidia-smi
输出方框就说明显卡驱动正常,可以继续。
方法一:使用系统环境变量
管理多版本CUDA
方法相对来说最简单,直观。就是更改cuda对应的系统环境变量,使得其指向不同的版。
优点:
- 节省空间,不需要创建太多的conda环境
- 安装方便,网络问题导致无法conda安装时,除了可以离线安装,还可以手动管理
- 安装的cuda是完整版,使用**C++**开发一定要用这个方法安装
缺点:
- 切换环境需要修改
系统环境变量
,在多人使用的服务器上容易造成版本混乱。 - 复现代码时候每次都要查看文档,手动下载,配置环境变量,复制cudnn,成本高
环境检查脚本
很多仓库在安装时候会指定cuda-tookit
,导致环境
安装
windows本地安装
- CUDA版本选择:
- 打开NVIDIA控制面板,选择系统信息,查看支持的CUDA版本。
- CUDA toolkit下载:
- 访问NVIDIA开发者网站的CUDA Toolkit下载页面。
- 根据自己的操作系统和CUDA版本选择合适的下载链接。
- 下载并运行.exe文件,按照安装向导进行安装。
- 设置临时解压目录和安装目录,建议使用默认设置。
- 安装完成后,配置CUDA的环境变量。
- cuDNN下载和配置:
- 访问NVIDIA开发者网站的cuDNN下载页面。
- 注册一个账号并登录,然后选择适配自己CUDA版本的cuDNN版本进行下载。
- 解压下载的压缩包,得到三个文件夹。
- 将这三个文件夹的内容复制到CUDA的安装目录中。
- 添加CUDA安装目录到系统环境变量的path中。
- 验证安装是否成功:
- 打开命令提示符,输入
nvcc --version
命令,查看CUDA版本号。 - 输入
set cuda
命令,查看CUDA设置的环境变量。
- 打开命令提示符,输入
Linux本地安装
-
下载cuda:
-
首先确定需要下载的版本,wget下载。
-
赋予权限,安装
wget https://developer.download.nvidia.com/compute/cuda/自己的版本 sudo sh cuda_xxx.run
这里需要额外注意,如果需要多版本CUDA 共存,不要选择更新当前cuda,应该选no。
-
-
配置环境
- 添加环境变量
sudo vi ~/.bashrc export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} export CUDA_HOME=/usr/local/cuda-11.6
- 更新环境变量并检查
source ~/.bashrc sudo ldconfig nvcc -V
多版本管理
Windows
在windows中,在控制面板中找到编辑系统环境变量
选项。
- 在
系统环境变量栏
,找到Path
和CUDA
。确定将要使用的CUDA版本,可以在系统环境变量栏
其他的CUDA*
中找到当前安装了哪些版本的cuda。 - 把
CUDA
的地址换成目标版本的CUDA 安装地址 - 在
Path
中把目标版本的CUDA地址放在最上面,这样nvidia-smi
指令就能找到当前实际使用的cuda版本。否则,其显示将会是默认的最新版,或者以前的版本。 - 重新启动(不必要)
Linux
在Linux中,基本原理一样,就是更改系统环境变量,使得cuda的指向软连接改变。
-
找到目标cuda版本的安装地址,默认在
/usr/local/cuda-版本号
中。 -
打开终端,vi编辑
~/.bashrc
文件,到文件末尾修改下面的地址export PATH="/usr/local/cuda-11.0/bin:$PATH" export LD_LIBRARY_PATH="/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH" export CUDA_HOME=/usr/local/cuda-11.0
-
更新环境变量并检查
source ~/.bashrc sudo ldconfig # 检查安装 nvcc -V
当然,在linux中指令行窗口使用export
可以临时在当前bash环境更换版本。
在bash输入,更换成对应版本即可
export PATH=/usr/local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH
方法二:使用Docker
这种方法的学习成本比较高,但是对于频繁切换电脑、切换系统;需要在多台无人车、板卡配置生产环境等高移动需求的人来说,是最好的方法。打包解包速度快得很。
这里简单介绍使用方法,详细请查看我的文章:Docker配置深度学习环境。
请注意:在Windows系统中不推荐使用docker(CUDA for WSL2驱动问题多,效率低,不如直接linux)
linux上安装NVIDIA Container Toolkit docker
Ubuntu 16.04/18.04, Debian Jessie/Stretch/Buster:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
$ sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
$ sudo systemctl
CentOS 7 (docker-ce), RHEL 7.4/7.5 (docker-ce), Amazon Linux 1/2:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
$ sudo yum install -y nvidia-container-toolkit
$ sudo systemctl restart docker
激活环境 :
$ docker run --gpus all <镜像名称>
无须测试安装,不会出错的。
切换版本
run不同版本对应的镜像即可。
方法三:使用anaconda
很多人对于anaconda的印象停留在python的包管理上,但其实它可以用于很多其他版本的管理中。比如cuda+cudnn的版本管理,就可以依靠环境完成隔离。
使用conda安装cudatoolkit其实在取巧,因为PyTorch的GPU版本已经编译过程中加入了大多数CUDA依赖,这里只需要补充一小部分就好了。对于大多数python应用,这个就足够了。
但是,如果你需要使用 mmcv-full ,tensorflow编译版本, 等其他所有需要编译的库,请使用完整安装方式。编译时必须要有完整的cuda。
安装
对于anaconda,linux和windows是一样的。
-
首先,新建虚拟环境并进入:
conda activate 环境名
如果有其他环境(甚至其他计算机的,拷贝过来也可以),包很全,可以使用
conda create -n 新环境名 --clone 已有环境名
-
搜索所有可用包的信息
conda search cudatoolkit --info
-
执行安装
a. 网络好,直接安装。conda install cudatoolkit==版本号
b. 网络差,下载卡住,离线安装。
conda search cudatoolkit --info # 找到下载地址 wget 下载地址 conda install --use-local 下载好的地址
c. 特殊安装在末尾添加,这样安装时nvcc就可用。使用Style GAN2系列的需要注意用这个。或者就要额外安装cuda,独立安装情况下是完整的。
-c hcc
-
安装cudnn
-
cudnn的版本和cuda版本对应,如果省事儿,网络好,可以一起安装
conda install cudatoolkit==版本号 cudnn
-
在线、本地安装(同上)
-
-
检查安装成功与否
需要注意,conda环境下的nvcc地址和需要自己手动export,在对应虚拟环境下面。因此可以安装nvcc工具:
conda install -c nvidia cuda-nvcc # 或者特定版本的nvcc,安装的版本应与你的cuda版本兼容 conda install -c "nvidia/label/cuda-x.x.x" cuda-nvcc
验证安装:
nvcc -V
切换版本
直接使用conda,切换到对应版本的虚拟环境即可。建议自己写个文档,记录哪个虚拟环境都是什么版本的python和torch、cuda、cudnn。
多种方式的共存
上述的三种方式完全可以共存,例如很多库都会偷偷安装conda的cuda-tookit,但这并不会影响此conda环境之外的其他包。同时conda安装的cuda也不会影响代码的编译过程,这一点需要注意,尤其是在写cpp时候。
优先级
在conda环境中调用cuda时,需要区分主动和被动两种。
- 当
tensorflow-编译版本
等调用cuda时,将会调用系统安装的cuda。 - 当torch等库调用cuda时,优先选择conda内的版本。
- docker不会受到其他影响,可以当作虚拟机用。