目录
四旋翼无人机定高控制系统设计 1
摘要 1
Abstract 1
第1章 绪论 3
1.1 研究背景 3
1.2国内外研究现状 5
1.3研究内容 8
第2章 四旋翼无人机编队控制系统研究 9
2.1 四旋翼无人机基本原理 9
2.1.1 组成与结构 9
2.1.2 相关坐标系表示及转换 12
2.1.3 飞行工作原理 12
2.2 四旋翼无人机控制系统简介 15
2.2.1 串级PID控制 15
2.2.2 姿态控制系统 16
2.2.3 位置控制系统 16
第3章 动力学模型建立 17
3.1 引言 17
3.2 飞行原理及坐标变换 17
3.2.1四旋翼无人机的飞行原理 18
3.3 四旋翼无人机动力模型建立 21
3.3.1四旋翼动力学模型建立 21
3.4 PID 控制 22
3.5 四旋翼无人机编队体系结构 24
3.6基于模糊PID控制器的控制系统设计 26
第4章四旋翼无人机航姿测量设计与实现 27
4.1 引言 27
4.2航姿参考系统描述 28
4.3 MEMS 器件校准与前置低通滤波器设计 28
4.3.1 陀螺仪校准 28
4.3.2 加速度计校准 29
4.3.3 磁强计校准 30
4.3.4 前置低通滤波器设计 31
4.4 基于EKF的航姿测量设计 32
4.4.1 EKF时间更新 33
4.4.2 EKF测量更新 33
附录 34
第1章 绪论
1.1 研究背景
无人驾驶飞机(Unmanned Aerial Vehicle)简称“无人机”,被简称为“无人机”的无人驾驶飞机(Unmanned Aerial Vehicle)是指那些通过无线电远程控制设备、自带程序控制或由机载计算机间歇性操作的无人驾驶飞机的总称。它主要包括无人侦察机、有人机以及直升机等类型,其中以无人侦察机为代表,具有体积小、重量轻、成本低、飞行安全性能好、可重复使用等特点。由于无人机的工作方式和结构差异,它们通常被分类为固定翼无人机和旋翼无人机。旋翼无人机由于体积小、重量轻、机动性好而受到世界各国的青睐,在军用及民用领域都有广泛用途,如空中侦察、电子对抗、精确制导炸弹发射平台以及战场指挥控制系统等。固定翼无人机由于其出色的速度和续航性能,经常被用于执行军事打击和侦查任务,例如国产的“彩虹”和“翼龙”系列无人机。在民用方面,主要应用于航拍、测绘、气象探测、消防救援以及抢险救灾等领域。旋翼无人机可以根据旋翼的数量被分类为单旋翼无人机和多旋翼无人机。其中,无人直升机是单旋翼无人机的代表,也是旋翼无人机研究的基石。随着微电子技术和传感器技术的进步,如四旋翼、六旋翼、八旋翼等无人机应运而生。特别是四旋翼无人机,已经成为各科研机构和企业的重点研究对象。
图1.1固定翼无人机与旋翼无人机
在最近的几年中,无论是用于喷洒农药的植保无人机、用于电网勘查的巡线无人机,还是用于航拍摄像的消费级无人机,多旋翼无人机在各种行业和的日常生活中都已广泛应用。为了进一步提高无人机的智能化水平,研究人员增加了摄像头、激光雷达等环境感知传感器,赋予它们“智慧之眼”,从而使无人机能够执行更多样化的任务。相比于传统固定翼飞机而言,旋翼无人机具有结构简单、成本低以及易于操作的优势。然而,随着载荷的逐渐增大和能源消耗的增加,旋翼无人机在续航和负载能力上的局限性制约了智能化研究的进一步深化。同时,由于旋翼无人机之间存在着复杂且动态的空间关系,使得它们难以协同工作。为了克服这一挑战,研究人员参考了自然界中动物集群的活动模式,期望通过多架旋翼无人机之间的合作来共同分担任务负荷,从而在有限的飞行时间内提升任务完成的效率。本文以无人机协同合作模式作为研究对象,对无人机群协同工作进行建模并提出相应算法,最后利用仿真实验验证方法有效性。经过验证,无人机编队在完成任务的效率和复杂性方面具有显著的优势。
无人机编队是一种通过多架无人机之间的互动联系,按照特定的队形将它们组织成一个庞大的机群的方式。随着科技水平的提高,无人机技术逐渐成熟并广泛应用于各个领域,如军事领域、工业制造、医疗救援及民用服务等方面。在编队系统控制领域,目前的研究焦点主要集中在编队队形的构建和转换、编队飞行路径的规划、编队中各机体之间的碰撞避免以及编队的协同控制机制等方面。同时,农业和植保编队作业、大范围的危险地区联合搜索、大环境的联合监控以及无人机集群灯光秀等行业应用也被认为是无人机编队未来发展的重要方向。
图1.2 无人机编队行业应用
虽然编队系统的应用能够提升任务执行的效率,但在同时操控多台四旋翼无人机进行协同飞行的过程中,也面临着一系列新的挑战。由于无人机之间距离较远,因此需要采用多传感器信息融合技术对各无人机进行协调控制。随着编队中无人机数量的逐渐增多,系统的控制变得更为困难,这不仅削弱了系统的稳定性,还导致了通信成本的上升。因此,研究一种基于多智能体的编队控制算法成为当前热门课题。在编队的网络拓扑中,确保每架无人机状态的一致性成为了协同控制的核心关注点。由于无人机群自身具有高度非线性和不确定性,使得传统方法很难保证所有的飞行器都能到达指定目标点。研究如何确保四旋翼无人机在任何起始位置都能迅速且精确地形成队列,并能稳定地维持在预定状态,一直是国内外科研人员持续追求的目标。
1.2国内外研究现状
最初的四旋翼飞行器是在国外诞生的。1907年,Breguet兄弟成功研制了GyroPlane No.1,这是世界上首个试飞成功的四旋翼飞机。然而,与固定翼飞机和直升飞机相比,由于四旋翼飞行器需要同时控制多个执行机构,它的发展在很长一段时间内一直停滞不前。近几十年来,随着新材料、微型惯性测量单元(IMU Inertial Measurement Unit)和微机电系统(MEMS Micro Electro Mechanical Systems)的成功研发,四旋翼无人机得到了迅速的发展,并取得了很多成果。目前,这些无人机主要集中在美国、德国、法国、瑞典等欧美发达国家。许多国外的高校也开发了优秀的四旋翼无人飞行器。
宾夕法尼亚大学的GRASP实验室基于Ascending Technologies公司研发的蜂鸟四旋翼飞行器,结合室内红外光成像技术和机载IMU,成功地在室内实现了稳定的飞行。在此基础上,他们还进一步开发了翻转、避障、目标识别以及多机协同飞行等功能。图1.3所示了他们研制的这款无人机。
图1.3 宾夕法尼亚大学的四旋翼无人机
除此之外,他们还探索了利用激光测距仪进行即时定位与地图构建(SLAMSimultaneous Localization and Mapping)技术的研究,目的是降低飞行过程中对外界干预的依赖。为了降低碰撞对螺旋桨造成的损害,斯坦福大学设计了一款具有框架结构的四旋翼无人飞行器,该飞行器的设计如图1.4所示。在飞行过程中可以根据障碍物距离自动调整自身高度和速度来躲避障碍,同时还可通过红外传感器探测周围情况以保证安全飞行。这套无人机系统主要使用PC104作为其核心控制器。它具有高度集成化和模块化结构特点,可以在地面上完成复杂任务。该系统由姿态检测单元、超声波模块、GPS模块和视频传输模块等组成,并通过PPM遥控器或手机Wif网络来对飞行器进行精确控制。研究人员将此控制系统应用于无人驾驶直升机领域,取得了很好的效果。他们经过实验研究,成功地构建了一个精确的数学模型,并设计出了高效的控制器,能够执行如反转(Looping)这样的特技飞行动作。此外,还开发了相应软件来辅助完成上述任务。基于这个前提,他们使用这款无人机成功地设计并实施了对地面移动目标的稳定追踪,本文还给出了相关算法仿真结果及相应分析。
图1.4 斯坦福大学研制的 Quadrotor Helicopter 飞行图
纽约市立大学城市学院的Ivan Dryanovski和他的团队,在回顾近些年在这一领域的研究成果后,成功设计出了CityFlyer 四旋翼无人机,这款无人机具有自主定位和飞行的能力,具体可以参见图1.5。它能够利用自身携带的传感器感知周围情况并做出相应反应。这款无人机搭载了一个1.6GHz的Atom处理器和两个ARM7微处理器,其中Atom处理器在实时操作系统的支持下实现了3D实时地图的构建和导航功能;一个ARM微处理器负责IMU的数据整合功能,而另一个ARM处理器则专注于飞行控制算法的计算和执行。
图1.5 纽约市立大学城市学院的CityFlyer四旋翼无人机
自1998年起,日本千叶大学的Kenzo Nonami教授团队便开始了关于无人机独立飞行的深入研究。他认为无人机的发展方向是能够自动规划航线并进行导航和控制的飞行器,而不是像传统飞机那样只能依靠人工操作才能完成任务。基于德国Ascending Technologies公司提供的四旋翼无人机技术,他们成功研发了X-3D-BL无人机,而图1.6 所示了这款无人机的飞行轨迹。
图1.6 日本千叶大学研发的X-3D-BL 无人机飞行图
这款飞行器采用了三轴陀螺仪、加速度计和磁强计作为其飞行控制的内环传感器;通过一个微型计算机完成对整个系统的实时处理。他们采用静态气压计来测定高度,同时使用空速计来测定速度,并配备了GPS系统,基于这些技术,他们成功地为无人机提供了路径规划和独立导航的能力。这些先进的设备将使未来的无人机更加智能、安全并能更经济地完成任务。Bouabdallah教授的团队,来自瑞士洛桑联邦理工学院的自主汽车实验室,成功研发了一款名为OS4的小型四旋翼飞行器,并连续推出了OS4-I和OS4-I的两个版本。这一代作品主要针对室外环境下的无人车系统设计,并通过实验验证其可行性。基于OS4-I,他们对PID、自适应LOR以及基于Lyapunov稳定性的控制算法进行了深入研究,从而实现了更稳定的姿态控制。这些算法都需要大量时间去计算最优解或者寻找次优解,并且对初始参数非常敏感。后续,基于OS4-的技术,他们成功地在室内环境中实施了自主悬停控制[12-13]。图1-5所示的OS-II无人机是OS4无人机系列中的第二代代表作品。
1.3研究内容
四旋翼无人机定高系统是无人机的核心技术之一。本课题要求传感器采用气压计、加速度计、陀螺仪等获知高度、加速度、角速度等信息,由于各传感器检测的值都不是很准确,要求采用卡尔曼数据融合技术获取相对真实值,采用串级控制实施高度精准控制,内环、外环的控制不作要求,可根据实际情况确定,通过地面站验证设计的正确性。
EKF结合了IMU的测量值和四旋翼动力学模型,通过状态估计和卡尔曼滤波技术.通过持续地整合IMU数据和其他传感器的信息,并使用EKF来进行状态估计和滤波,可以实现对四旋翼无人机姿态的高精度和稳定的实时估计
课题任务要求
1.飞机能基本实现垂直起飞;
2.20分钟内飞机自由飞行高度下降不超过20厘米;
3.可用C+或者汇编进行软件设计,要求程序代码容量不超过5K,
4.要对电机防堵转进行设计。
第2章 四旋翼无人机编队控制系统研究
2.1 四旋翼无人机基本原理
2.1.1 组成与结构
四旋翼无人机是一种拥有4个输入,6个输出的欠驱动系统,通常由机架、动力系统和飞行控制系统三部分组成:
(1)机架
机架是一个物理构造,用于装载无人机的动力系统、飞行控制系统和其他传感器,由机身和起落架组成。其主要作用是为整个机体提供支撑力并保证飞机正常工作。为了适应四旋翼的小巧体积和轻便重量,机架通常选用如碳纤维、玻璃纤维或塑料这些高强度、轻质的材料来制造。机架的尺寸通常是通过其对角线上两个电机的轴心距离来定义的轴距。四旋翼飞行器的机翼可以根据其用途进行设计,也可采用复合材料制造而成。根据机头的朝向差异,四旋翼机架在安装时可以选择十字形或X形的两种配置。由于飞机飞行速度快,因此十字型机架更适用于高速飞行器。十字型机架代表四旋翼的机头朝向是其中一个机臂朝外的方向,而X字型机架则表示机头朝向与其中一对机臂之间是45°的夹角。目前常用于无人机平台的机身主要采用这种对称式布置方式。在实际操作中,与十字型结构相比,X字型结构更为灵活,并能显著减少机臂和螺旋桨对云台视野的遮挡。
图2.1 四旋翼无人机机架布局
(2)动力系统
四旋翼无人机的驱动系统是由螺旋桨、无刷电机、电调(ESC)以及电池所构成的。其中,螺旋桨是整个系统的动力源。螺旋桨主要负责生成四旋翼飞行所需的力量和扭矩,无刷电机则负责将电池的储能转化为驱动桨叶旋转的机械能。电调则根据接收到的飞行控制系统发送的PWM信号来控制电机的转速,而电池则主要负责为动力系统提供所需的能量。在设计中考虑到系统各部件之间的配合关系以及相互之间的制约因素,使整个动力系统具有良好的可维护性及可扩展性。动力系统和机架是相互补充的,它们之间的匹配度会直接决定四旋翼无人机的机动表现、续航能力和最大载重能力。因此对螺旋桨进行优化设计具有重要意义。机架的尺寸对螺旋桨的最大尺寸有直接影响,它直接决定了螺旋桨能够产生的最大拉力以及四旋翼所能承受的最大负荷;动力装置是四旋翼飞机的动力源,它通过改变输出轴方向来调整速度或加速度。通过选择合适尺寸的螺旋桨,电机在消耗同等能量时可以产生更强的拉力,从而增加其续航能力。同时也会导致发动机功率增加,从而降低飞机的飞行性能。因此,仅当根据机架的尺寸来选择适当的动力系统组件时,四旋翼才能实现更高的效率和更长的运行时间。
图2.2 四旋翼无人机动力系统组成
(3)飞行控制系统,通俗地被称为“飞控”,是负责控制四旋翼无人机在原地起飞、执行任务以及返航回收等各个环节的关键系统,它主要由硬件和软件两大部分构成。硬件部分通常由以下几个部分组成:
1惯性测量单元(Inerial Measurement Unit IMU)由三轴陀螺仪(用于飞行姿态感知)、三轴加速计和三轴磁力计组成,其主要功能是计算四旋翼的姿态数据。
2)该系统的定位模块包含了光流传感器(用于精确地定位悬停的水平位置)和GPS模块(用于粗略地定位室外水平位置的高度),这些都是为了获取四旋翼飞行器的全局定位信息。
3高度测量传感器包括气压传感器(用于粗略控制悬停高度)、超声波传感器(用于低空高度的精确控制或避障)等,这些传感器用于测量四旋翼的绝对高度(海拔高度)和相对高度(距离地面高度)信息。
4微控制单元(MicrocontrollerUnit MCU)是一个集成模块,其主要功能是驱动IMU和其他传感器,并根据接收到的信息生成相应的控制指令。上述的传感器可以被用来处理四旋翼的感知、控制以及决策难题。
5其他接口:用于连接板载计算机、外部传感器、电调等其他硬件的通路可以连接数传模块与上位机进行数据交换,也可以连接遥控器接收机,利用遥控器控制四旋翼的飞行动作。
飞行控制系统的软件部分采用了上述的传感器,并通过特定的算法来控制四旋翼的姿态、位置和飞行路径,从而实现四旋翼的感知、控制和决策功能。
2.1.2 相关坐标系表示及转换
作为一个欠驱动系统,四旋翼无人机的四个输入分别控制四个无刷电机的转动,六个自由度的输出包括四旋翼的姿态角(横滚角Ro1、俯仰角Pitch、偏航角Yaw)和三个轴向运动(三维方向)。因此,本文采用了一种基于坐标变换与运动学方程相结合的方法来描述整个飞行过程中的各个关节变量之间的关系。为了更精确地描述四旋翼在空间中的位置和姿态,在这一小节中引入了以下两个坐标系统:
图2.3 四旋翼无人机机体坐标系、导航坐标系以姿态角表示
2.1.3 飞行工作原理
无刷直流电机确保了四旋翼拥有足够的动力,并且它是欠驱动系统中4个输入直接影响的目标。通过分析旋转电机的工作原理和受力状态,建立了基于矢量控制理论的数学模型。通常,可以将旋转电机的稳态推力T进行模型构建:
对于i号电机来说,Ari代表螺旋桨的旋转覆盖面积,ri代表其半径,代表旋转的角速度,C代表推力系数,这是由电机的几何形状和性能所决定的,而p代表空气的密度。本文最后对上述公式进行了推导,得出在给定条件下,各参数与发电机转速之间的关系表达式以及计算值,并给出计算结果。由于p、A和的值都大于0,可以将上述公式简化:
同时,反扭矩大小可以表示为:
其中:Mi表示螺旋桨i产生的反扭矩,C为转矩系数。
通过使用简化的数学公式,可以得知电机产生的推力是由其角速度决定的,而这个角速度的大小与电机的转速有关。转速越高,角速度就越快。因此,当四旋翼无人机的四个电机转速不一致时,它们产生的升力也会有所不同。为了验证该模型的有效性,设计了以单片机作为核心控制器的四旋翼无人机控制系统。飞行控制模块通过操纵四个电机来产生各自不同的升力,从而改变四旋翼的整体姿态。这使得四旋翼能够按照六个不同的自由度进行运动,包括绕轴滚动(Ro)、俯仰(Pitch)、偏航(Yaw)以及轴向运动的前后、左右和上下方向。由于每个关节都有相应的传感器与控制器相连,因此在进行姿态控制时可以同时实现各个方向上的运动。
(1)垂直运动
垂直运动指的是四旋翼无人机在垂直方向上通过改变升力来实现上下飞行。从四旋翼模型和电机简化模型可以看出,为了使四旋翼无人机整体上升或下降,必须同时增加或减少4个电机的转速。如果只考虑水平速度,则四翼之间存在一个相对转动关系,而此时的电动机转速不能过大。因此,可以将垂直运动看作是四旋翼升力的变动:
(2)水平运动
当3号和4号电机的转速增加时,1号和2号电机的转速会下降(在竖直方向上,四个电机的总升力保持不变),四旋翼会向前飞行,俯仰角q是负机头向下倾斜的,其他三个方向则依此类推。由于在空中的位置与地面有一定偏差,所以垂直速度不能完全用空气动力学公式计算。在这个基础上,可以用力矩来描述水平运动:
(3)航向运动
从图中可以观察到,4个电机的转向方式各不相同:1号和3号电机是顺时针方向旋转,而2号和4号电机则是逆时针方向旋转。通过改变这三个电机的转速可使直升机获得四个方向上的控制力矩,即可以实现垂直和水平两个维度的运动。当1号和3号电机的转速增加,而2号和4号电机的转速减少时,四旋翼的逆时针旋转y角会相应减小;当一、二、三、四等三个电机同时工作时,其速度变化与之相反。相对地说,当y按顺时针方向旋转时,它会变得更大。在一个周期内四个桨叶都绕轴做圆周运动,这就叫做偏航性运动。偏航的动作可以用力矩来描述:
综上所述,四旋翼无人机的运动模式可以表示为:
2.2 四旋翼无人机控制系统简介
2.2.1 串级PID控制
PID(比例-积分-微分)控制器是工业控制中经常采用的技术,它具有简洁的结构、出色的稳定性以及调整的便捷性,主要由比例、积分和微分三大部分构成。由于它具有很好的静态性能以及鲁棒性能,被广泛地用于控制系统中。PID控制方法并不受被控对象的具体结构、参数或数学模型的影响,它在许多应用场景中都是适用的。下面是控制器的详细构造描述:
图2.5 PID控制原理图
经过控制器三个环节的调节,得到的输出量为
在使用时通常将PID连续系统离散化为
为了确保四旋翼能够稳定地飞行,关键在于对其姿态角进行精确控制。在采用单环PID来控制姿态角的过程中,观察到该控制器对于机身的震动、气流等外部干扰的抵抗能力较弱,无法满足实际的飞行要求。因此需要设计一种具有抗干扰能力强,鲁棒性好的新型控制器。为了提高飞行器的稳定性和控制质量,本研究选择了串级PID作为四旋翼姿态和位置的控制器。串级PID控制策略是通过串联两个单环PID控制器来实现的,其中控制器的外环输出被视为内环的预期,并通过控制器内环的输出来实际控制系统,从而实现对外环被控量的更优控制效果。通过仿真实验验证了这种方法可以有效地克服扰动因素带来的不利影响,使其具有更强的鲁棒性能和更高的控制精度,并且能够实现快速响应和超调小等优点。串级PID控制系统的架构如图所示。
图2.6 串级PID原理图
2.2.2 姿态控制系统
由于内环控制是角速度控制,所以外环的实际输出是期望的角速度。
图2.7 姿态控制框图
2.2.3 位置控制系统
为了确保四旋翼无人机能够顺利完成定点悬停和航迹规划等一系列复杂任务,精准的位置估计和高效的位置控制是绝对必要的。本文提出了一种基于神经网络的四元数算法来计算位置坐标和姿态参数。位置控制通过计算期望位置来确定预期的横滚角、俯仰角和总升。控制系统的外环输入代表了预期的位置,通常是四旋翼在导航坐标系中的三维定位,而外环的反馈数据则是通过GPS、超声波、摄像头和激光雷达等位置传感器来获取的。通过对上述三种位置信号进行处理来计算出实际位姿参数,从而获得了系统中各个姿态的角速度与力矩。外环向内环控制器输出预期的速度数据,而内环的反馈数据通常可以通过GPS、光流、加速度计等传感器,无论是直接还是间接,来获取速度信息。为了使系统具有良好的跟踪性能,需要对位置进行有效地控制。通常情况下,位置控制可以被划分为水平控制与高度控制两大类。
图2.8 位置控制框图
第3章 动力学模型建立
3.1 引言
为了准确描述对象在不同输入条件下产生的相应输出关系,有必要构建一个数学模型。这个数学模型是为被控对象设计控制器算法的基础,因此,建立四旋翼无人机的动力学模型是本研究的基础任务,也是至关重要的一部分。由于飞行器具有非线性、强耦合等特点,所以必须采用合适的数学方法来对系统进行建模研究。从建模的方法角度看,通常将其划分为理论上的建模和基于实验的建模两大类。前者通过数学推导或解析法得到其运动微分方程组,后者则通过测量所得数据对模型参数进行辨识与修正。在探讨系统动力学的建模问题时,可以将理论建模划分为经典的力学建模方法和分析力学建模方法。
3.2 飞行原理及坐标变换
四旋翼无人机的常见飞行结构包括X字结构和十字结构两大类,如图3.1所示的那样。从理论角度看,这两种结构并没有本质上的差异。但考虑到实际飞行中字结构更为常见,本文选择了X结构作为四旋翼无人机的主要飞行结构。
图3.1 四旋翼飞行结构
3.2.1四旋翼无人机的飞行原理
为了更直观地描述螺旋桨在不同位置的旋转方向和编号,如图3.2所示的,四旋翼无人机的飞行状态可以被看作是由一系列基础飞行动作组合而成,包括但不限于偏航、俯仰、横滚、垂直升降以及悬停。接下来,将分别对这些动作进行详细介绍。在这个基础上,如果四个旋翼同步增加或减少其转速,飞行器将呈现出一个向上或向下的运动趋势,如图2-7所示。
图3.2 旋翼名称编号
图3.3 偏航运动
图3.4 俯仰运动
图3.5 横滚运动
图3.6 悬停状态
图3.7 垂直运动
3.3 四旋翼无人机动力模型建立
3.3.1四旋翼动力学模型建立
四旋翼系统的动力学方程可以通过牛顿-欧拉公式进行推导。为了更好地突出控制层面的主要问题并方便模型的建立,需要省略或简化飞行器影响较小或可以通过硬件安装等方法消除的物理量,基于此,提出了以下假设:
a)假设飞行区域的地面是一个平面,忽略地球自转,重力加速度视为常值。
b)将机体结构和旋翼都视为刚体,忽略机体的弹性形变及振动。
c)四个电机及螺旋桨都对称安装,且除正反极性外其他参数均相同。
d)机体的质量分布均匀且质心与外形中心重合。
四旋翼无人机的动作可以被划分为两大类:一类是在地面坐标系中进行的平移动作,而另一类是在机体坐标系中进行的旋转动作。对于后者而言,机体与地面之间存在着相对运动关系,因此需要根据运动学理论分析机体和地面之间的相互位移关系。当机体进行平移运动时,可以把它看作是一个独立的质点,并在此基础上研究其在地面坐标下的位置和高度变化;在转动运动情况下考虑了旋转和俯仰两个自由度。
3.3.2 四旋翼无人机平动模型
通过对四旋翼无人机受力的详细分析,可以确定作用在飞行器上的力主要来源于三个方面:一是机体所承受的重力,二是四旋翼通过各旋翼旋转产生的合外力,三是运动过程中受到的阳力。接下来,将分别对这三个方面进行详细介绍。
第i个旋翼产生的总升力E可以用来表示:
由假设条件可知旋翼参数相同,故而旋翼具有相同的升力系数:
阻力系数:
3.4 PID 控制