基于人脸识别的智能门禁系统(源码+万字报告+讲解)

目录
基于人脸识别的智能门禁系统 I
摘要 I
Abstract II
1 绪论 1
1.1 研究背景与意义 1
1.2 门禁系统研究现状及发展趋势 4
1.3 人脸识别技术国内外研究现状 6
2 人脸识别理论分析与研究 8
2.1 人脸识别算法 8
2.2 人脸识别技术 8
2.3 支持向量机的人脸识别算法 11
2.4 人脸识别门禁系统的功能及通信协议 12
2.4.1 应用编程接口 12
3系统结构及电路设计 14
3.1系统硬件电路设计 14
3.1.1 HLK-KT210人脸识别模块 14
3.2 单片机最小系统 15
3.3 升压电路 15
3.4 人脸识别模块接口 15
3.5实物图 15
4 软件设计 18
4.1嵌入式门禁端执行 18
4.2人脸检测 18
4.3门锁控制 20
5 总结与展望 21
5.1 总结 21
5.2 展望 21
参考文献 22

1 绪论
1.1 研究背景与意义
在21世纪,恐怖袭击事件屡见不鲜,导致人们的身体和财产安全受到威胁。安防技术也越来越受到关注和重视[1]。随着社会对安全标准的日益增长和经济状况的持续优化,安全防护系统也在不断地进步和发展。安防系统是一种综合了视频监控、电子技术、计算机技术和通信技术相结合的高新技术产品,具有防盗防破坏、信息记录存储和传输功能,能有效防范各类犯罪及突发事件的发生。作为安全防护系统的关键部分,门禁系统在住宅社区、企业和事业单位、教育机构等多个场合得到了广泛应用[2]。由于门禁是一个人进入特定空间的唯一途径,因此它成为了用户最关心的问题之一。传统的门禁认证系统往往依赖于密钥、IC卡或密码等工具来完成身份鉴别,但这些手段有被非法窃取或遗失的危险性,这显然与现代社会对于安全保障的普遍观念不符。近年来,由于计算机技术和网络技术的飞速发展,使得基于图像的身份识别系统成为研究热点。人们急切地寻求一种更为便捷、更为安全且更为方便的身份验证方法。生物特征是指生物体本身所具有的生理特性或行为模式。随着计算机视觉技术和生物特征提取技术的持续进步,将这两种技术结合起来,首先提取人体的生物特征[3],然后利用计算机进行识别。在此过程中,利用人脸识别方法来判断是否为合法人员并对其信息予以记录,从而达到了对非法用户进行限制的目的。这个方法已经变成了社会身份验证的未来趋势。在这个过程中,生物特征提取起着非常重要的作用。生物特征提取是指利用生物、光和声音传感器来获取生物的生理或行为特征。其中,生理特征涵盖了指纹、面部和眼膜等[4],而行为特征则包括了文字、脚印和语音等。这些生物特征都具有一定程度的不确定性,因此需要对它们加以分类并利用其信息来完成各种任务。鉴于这些特殊的属性,我们已经研发了多种识别方法,这些方法包含指纹鉴定、虹膜鉴定、视网膜鉴定、静脉鉴定、手掌形态鉴别、人脸鉴定以及基因鉴定技术。在所有生物识别手段中,指纹识别技术是现今被采用范围极广且技术完善的生物识别方法之一。在生物辨识领域,指纹技术被视为最受欢迎的系统之一,由于它的非侵入性、卓越的安全性和其对伪造的高抵抗能力,得到了众多用户的青睐。在当前的门禁系统中,最常用的识别技术包括:指纹识别、虹膜识别以及人脸识别[5]。

在二十世纪的早期,虹膜识别技术被认为是初步的生物特征识别手段,同时,指纹识别技术也逐步崭露头角,成为研究的焦点。指纹识别技术在许多领域得到了应用,如金融安全、海关安检、门禁控制等方面。指纹描述的是手指上的独特纹理设计,每个人的指纹在世界上都是独一无二的,这使得指纹成为了识别个人身份的重要标志[6]。目前最常用的指纹识别技术包括基于光学成像原理和基于图像处理方法两种类型。相较于其他的识别方法,指纹识别更为便捷、迅速,并且采集设备的成本也相对较低。在许多场合下使用指纹图像进行身份认证和验证具有不可替代的优势。这种方法的不足之处在于,指纹采集设备是直接接触的,容易受损,并且某些人的指纹特征相对较少,因此不能被采集设备准确提取[7]。纪90年代的尾声被首次提出的。随着科技发展,人类对虹膜结构及生理特性了解越来越多。虹膜描述的是位于巩膜与瞳孔之间的圆形区域,其中蕴含了众多的微观特征[8]。由于虹膜与皮肤有很好的亲和性,并且可以通过光学成像方式进行测量,所以它能够准确地对个人身份信息进行鉴别。从临床观察来看,一岁之后的虹膜基本保持稳定,并且每个人的虹膜属性都有明显的差异。目前主要采用基于图像分析、模式识别和机器学习等方法进行虹膜定位和分类[9]。因此,虹膜识别技术在与其他生物特征识别领域的比较中,展现出了极为出色的鲁棒性和独有的优势。然而,这种采集设备的不足之处在于它不能实现小型化,并且其成本相当高昂[10]。
在最近几年中,人脸识别已经成为模式识别、计算机图像和人工智能等多个研究领域的焦点话题。随着科技发展,人脸识别技术也得到了广泛的应用和推广。与其他生物特性相对照[11],人脸展现出了以下的优越性:
1.采集方式隐蔽
这一技术主要被应用于大规模公共活动中,以识别和定位犯罪嫌疑人,然而,像指纹识别和虹膜识别这类生物识别手段并不适用。
2.与采集设备没有接触
在进行数据收集的时候,用户不需要与采集工具有近距离的物理接触,这意味着它不具备侵犯性,并且很容易获得大多数用户的肯定。
3.交互性强,具有事后追踪能力
为了增强系统的稳定性,我们可以结合人与机器的交互来进行人脸识别。在此过程中使用了基于深度学习模型的方法来识别人脸图像[12]。通过记录事件发生时的人脸照片,我们能够进行深入的追踪与分析。
4.采集设备成本较低
尽管中低档摄像头的成本相对较低,但它们已经达到了人脸识别所需的精确度标准。由于人脸是一个复杂的多尺度特征问题,因此人脸识别仍然存在很多困难,尤其是在一些光照变化较大的情况下[13]。随着图像采集和处理设备性能的不断进步,人脸识别技术的准确度也在持续提升。近年来,人脸识别技术已成为计算机视觉领域研究的热点之一。虽然有这些因素,但在实际的应用场景中,对于背景设定、脸部表情以及身体姿态的关注和需求依旧强烈。因此,寻求更为高效的脸识别技术成为了一个重要的研究方向。众多算法在各种使用环境下都展现出了自己的优势和不足,而参数选择与各种技术的结合在人脸识别领域也带来了显著的效果。因此,针对特定环境如何筛选出最适宜的人脸识别方法已经成为当下迫切需要应对的挑战。在目前这个阶段,尽管有多种人脸识别算法,但每种算法都具备其特定程度的局限性。在某些特定的应用场景中,如何挑选最适合的人脸识别技术和数据以增强产品的整体用户体验是一个关键问题。同时,人脸检测作为人脸识别过程中必不可少的环节之一,其结果直接决定了整个识别流程的质量[14]。因此,这个课题在促进人脸识别算法研究方面具有相当高的理论重要性和实用价值。
这个课题不仅在理论研究上具有价值,而且在实际应用中也展现出了巨大的潜力。通过本文提出的方法可以有效解决现有门禁存在的问题。这个课题设计的门禁系统主要是为了满足实验室、研究所等对安全有较高要求的办公环境的需求。随着现代社会科技发展速度越来越快[15],各式各样的创新技术不断涌现。一旦进入人员离开时,必须通过密码才能解锁门禁,否则将被禁止出入。在这些特定的地点,进出门禁系统对人员的身份和时间都有明确的规定。这些人往往是在工作中需要长时间值班的员工或者是公司里的重要成员,一旦被发现就会受到严厉处罚甚至被开除出公司。但是,传统的门禁系统不能进行精细的权限管理,这导致了未经授权就擅自进入的人员。这样的状况不只是对公司的管理规范构成威胁,还可能给公司的资产安全带来隐患。
为了预防前述问题的出现,我们需要采纳新的安全防护理念,即将创新技术融入门禁系统中,进一步提高门禁权限的控制精度[16],确保办公环境中的人员能够有序进出,从而使公司的运营和管理效率得到显著提升。传统的钥匙只能在一定范围内开锁,无法对不同人进行识别,容易造成人为盗用,给人们带来极大不便。因此,采用生物特性进行的识别的先进门禁系统应尽快推出,包含但不局限于基于指纹、虹膜以及人脸识别的门禁系统。在众多基于生物特征构建的门禁系统里,指纹和虹膜识别技术均被认为能作为身份验证工具,并且具备良好的安全与稳定性。而人脸识别因其独特优势,已经被广大用户采纳。门禁系统的人脸识别功能在所有系统里只占据了一个位置,它采用了一种全新的算法对人脸信息进行识别,该算法具有实时性好、识别率高等优点,可以实现实时监控并自动报警。与指纹门禁系统和虹膜门禁系统相比[17],采用人脸识别技术的门禁系统不需要任何接触设备,数据采集更为隐秘,便于事后跟踪,同时图像采集设备也更为通用,成本也相对较低。所以本文设计了一种适用于家庭或办公室的低成本、易维护、易于推广的人脸识别门禁系统。除了上述内容,我们还采纳了高端的网络通信技术,确保在远端服务器上顺利实施人脸的识别,这不只大大简化了中心迁移的管理,还显著增强了门禁系统的处理效果和整体性能表现。总体来看,结合优化现有的人脸识别算法和其他生物特性识别技术,我们可以有效地应对当前智能门禁领域所遇到的若干挑战,从而进一步增强整体系统的安全和稳定性。本文主要研究并成功地整合了人脸识别技术到智能门禁的控制系统内部。通过优化人脸识别算法,有可能显著减少误差判定。另外,鉴于嵌入式设备的处理计算能力持续增强,我们具备将门锁管理、图像的预处理等技术集成到这些设备中,进而开发一个具备遥控查询和个人身份鉴定功能的智能化人脸识别门禁系统。
1.2 门禁系统研究现状及发展趋势
随着科技进步和安全管理标准的不断提升,门禁系统作为安全防护体系的关键组成部分,也在持续地进行更新和替换[18]。本文通过对门禁管理系统进行研究与分析,采用先进的技术和手段将传统的人工管理模式向智能化管理方向转变。软件部分展现了出色的视觉吸引力和智能化特点,而硬件则证明了更为可靠的稳定性和高的操作效益。
传统的门禁系统常常利用IC磁卡、工作授权证明和加密密码等多样策略来进行实施。按照这种管理制度,用户需要携带众多证件才能进入禁止区,并且仅限于某些特定人员进行操作。这个管理方法确实降低了维修和修复的比例。达到了极高的安全水平。但是,如果相关人员遗忘了携带磁卡或工作证,门禁系统将无法正常打开[18],他们只能选择向外部寻求帮助或强行撬开门禁来解决问题。这种情况在某些特定场所甚至会造成极大危害。当代的智能门禁系统通常使用指纹、虹膜、人脸等生物特征进行识别,这些特征是不可复制的,也不需要携带。在一定程度上解决了传统钥匙丢失后无法找回的问题。与其他的生物识别方法相比,人脸识别技术展现了其无侵犯性、事件的可追踪性和直观性,这使得身份验证过程更为高效。因此在当前社会发展背景下,人脸识别门禁系统对人们的生活产生了巨大影响,同时对其进行研究具有十分重要意义。现在,随着人们对人脸识别理念的逐步接受,人脸识别门禁系统在市场上的需求也在持续增长[19]。
自1960年开始,国外的研究者们便投身于人脸识别领域的探索。随着计算机和人工智能技术的发展以及人类视觉能力的提高,人脸识别逐渐成为一个新的热点领域。例如,IBM开发的FaceIt系统被设计用于对笔记本用户进行面部身份的验证[20];美国国防部研制出一种基于生物特征识别技术的电子护照系统,用来保护公民在境外旅行时的隐私不受侵犯。由Viisage公司制造的Face Finder系统已被成功应用于人脸身份验证,包括但不限于驾驶证和身份证,并且该系统还能与监控系统协同工作,适用于海关和安全检查等场合;还有一些公司已将其应用于金融领域如信用卡的验证。Mirio公司研发的True Face Gate Watch人脸识别系统被用于楼宇和社区的入口验证,并且该产品已经通过了国际计算机安全协会的活体测试。
与国际标准相较,中国在人脸识别科学领域的研究相对来说起步较晚。尽管近几年计算机视觉和模式识别技术得到了迅猛的发展,且人工智能也日益成熟,国内和国外对人脸识别的关注也在不断增加,但真正将其产业化实现仍是在这些年间。尽管有这些情况,我国目前的教育机构和研究团体仍然很多,它们已经进入了面部识别这一领域,并且在将研究数据转变为具体产品的步骤中,展现出了显著的成果。海鑫物联网有限公司是中国最大的、专门从事人脸识别技术研究和开发的高新技术企业之一。除此之外,该公司还拥有多项自主研发且具备知识产权的专利技术。海鑫物联网公司专注于人脸识别产品的研究与开发,是一家技术水平极高的公司[21]。历经数年的不断成长,海鑫已经确立了其独有的技术实力、人才池和品牌知名度,为客户提供从图像捕获至处理分析的一站式解决方法。在2010年,海鑫公司以“人脸识别监控报警系统”为核心,在上海世博会园区成功实施了大范围的人脸数据收集和对比分析任务。然后,该项目被列入了全国性的关键研发任务,也就是针对公共安全的核心技术专项。经过超过一年的成长和完善,海鑫物联网现已建立了一套技术体系并拥有完善的商业运作方式。这套监测系统在52个不同的员工通道中均已加装人脸校验工具,并在逾800个观众通道中部署了人脸监视设备,此外,设计还新增了一个能够保存7000万张人脸照片的储藏设施。此外,这个平台还支持人脸识别和身份鉴定等多项功能。该技术平台通过人脸识别系统来对工作人员和参观者进行身份鉴别,并且还能依据用户输入的命令来调控相应的安全设备。该系统在展示活动中,成功捕获了超过一亿张人脸图片[22],其在记录中达到了最高记录速度,达到了每小时20万人的速度。此外,该技术系统还具有对进入现场工作团队行人的面部识别以及面部特征匹配等功能的能力。当该系统确认了人的身份后,它会自动为其发送语音通知,并确保身份详情被传输至现场的维护装备,进而显著地减少了发生意外的机会。此外,通过引入人脸识别方法,使得该系统展现出高度的稳定性。在受控的测试环境中,该系统通过验收时表现得很出色,达到了100%的面部检测率和99%的脸部认证率。
在2016年3月19日,北京市石景山区为公开选拔的事业单位考试中,他们引入了立式的身份验证工具。该仪器是由北京中创世纪科技有限公司独立设计和制造的一种全新类型的身份鉴别设备,其工作机制是通过拍摄测试受试者的脸部图像,接着利用计算机进行数据处理,从而获取考生的身份信息。这款工具不只能够读出考生的身份证资料,还可以迅速采集他们的脸部照片。考生步入考场后,系统会迅速扫描他们的身份证号码和指纹等生物学特征数据。考生可以通过比对身份证上的面孔照片与实际收集的照片的特点,只要这两者的特点相同,显示验证就会符合标准,这样他们就能轻松进入考试。考生在此期间,也有权限通过手机、平板等移动设备登录,查看自己是否曾参与这次面试或被录用,同时也可以查阅自己的表现和其他重要的私人详情。考虑到人脸识别技术在迅速辨认面部特征和进行详细比较方面的优越性,这种技术有助于有效防止替考行为的产生[23]。另外,考试管理系统中融入的人脸识别技术使其能够自动地进行考生身份验证、成绩的输入和试卷的处理,这极大地优化了管理的效率和准确度。考试整体流程仅需不超过五秒时间,这确保了每一位考生都能通过刷脸考试的方法成功进入考场,从而减少了人力资源的无谓浪费,并且防止了替考等不良事件发生。
一旦旷视科技为智能店长推出解决策略,某家零售店的店员只需授权客户入驻,系统将会根据图像检测设备捕捉到的人物数据来验证其身份。如果商品未被纳入任何会员,商品的展示将会被自动撤销。确定某会员身份后,系统将详细分析该会员的财务状况,这包括他们的过往购物记录,并通过大数据来为用户推荐他们希望购买的物品。
1.3 人脸识别技术国内外研究现状
门禁控制的系统主要聚焦于人脸辨识技术,这一核心技术是人脸辨认的算法,它的研究轨迹可以回溯到20世纪50年代。在当时的场景中,人们会扫描面部并获取图像的资料,将这些资料转化为数字化信息,接着运用模式识别的原理来确认和识别这些人的身份。伴随计算机技术的持续发展及其广大的使用场景,人脸识别人像技术开始逐渐被关注,并已经成为现今备受瞩目的研究方向之一。本篇文章展示了国际与国内在人脸识别领域内的部分研究进展。早期的研究技术将人脸的几何特性用作关键变量,以此形成人脸的特征向量。
Bledsoe[20]详细介绍了一种依据几何特性进行面部识别的技术手段。这个技术的核心是通过选择一组人类脸部的参考点,并据此计算面积、距离以及角度等关键数据,以此实现对人脸的精细辨认。我们在这篇文章中将此识别方式引入了人脸鉴别系统。这个技术在运算数量、运行速度和准确度上都展现出了卓越的性能,但它的一个缺陷是对于图像的严格标准[24],此外,它还需提前投入大量样本信息。面对这样的情景,传统用于特征抽取的算法已经不能满足现实中的应用要求了。Brunelli采纳了人脸图片的边缘图积分投影技术,以便从图像中识别出人脸的多个独特特性,这些特性涉及到不同部位的外形、尺寸以及它们的具体位置。对于解读和识别个体的脸部情感及判断是否出现了不正常的活动,这些资料都显得尤为关键。该文研究了如何运用这一系列数据作为一个预先存在的依据,来描述面部特点。例如,我们可以描述一下从口腔到鼻部的长度、鼻子到眼部中心的距离、眼部所处的具体位置、鼻子的尺寸,如其宽度和长度、还有耳朵的整体尺寸等。基于上述内容,我们推出了一个依据贝叶斯理论构建的技巧以阐述这种关联。他所坚信的理论是,这样的属性构筑了一个完备的架构,计算机可以清晰地为它描述,并据此制定相应的数学模型。本研究提出了一个新颖的基于这些模型的脸部识别技术,此方法通过将样本分类进行分析,能够得到每个人独特的面部特征。他进一步建议使用灰度模型来描述人脸几何的特质。
利用几何属性构建的辨识方式在处理光线时表现出色,同时其处理步骤也非常清晰。本次研究展示了一套融合纹理分析技术与边缘识别手段的全新人面部定位和面部特征提取技术。这种方法采用了人脸的多个特定部位为特征,通过分析这些特定部分内的灰度分布情况来达到人脸的识别效果。此方法的局限性表现在对于获取的图像质量标准设置得非常严格,要从这些图像中抽取出稳固的特性是一个充满挑战的过程,而细微的表情和姿势变化同样会对最终的识别过程造成明显的干扰,因此它的鲁棒性并不是很强。
目前,人脸识别技术的核心研究方向主要围绕整体的匹配问题。此方案对整体模板中的多个特性进行了深入的考察,包括特征脸、稀疏字典、K-SVD、隐马尔可夫模型和神经网络方法等等。
Kirby和Sirovich成为了首批使用主成分分析手法来识别人脸的科学家。研究者使用了重构后的图像与原始图像中的均方误差作为度量准则,并采用主成分分析方法进行降维处理,从而使这类均方误差降至一个极为低的程度。本篇文章向我们展示了一个前沿的人脸识别手段,这项方法是基于特征空间进行降维的技术。为了让分类器更适合人脸检测任务,我们利用特征空间进行降维处理。首先,我们构思了一个包含各种图像分类的特征管理工具,然后将初始图像转移到特征空间,以便精确地计算该图像在特征空间的相对重要性向量。依据这些权重向量,原始图像可以被细分为多个子区域,每个子区域都拥有独特的灰度和纹理分布特点,这使得可以根据子区域间的联系来构建出相应的权重向量。通过比较此权值向量与特征空间中的每个类别图片的相应权数值,并进一步算出欧式距离来评定相似度[25],我们可以识别出在欧式距离最短的特征空间中与权值向量相匹配的种类,这将是识别过程的决定性步骤。实验数据证实,这种算法在识别精确度与实时处理方面都表现出众。得益于采用了一种独特的特征分析技术——主元化处理,此方式在处理样本集合内部与内部的类别差异时,展现了卓越的稳定性和鲁棒性。经过验证,此项技术与传统的如直方图均衡化的特征提取方法相比,展现出更优越的识别准确性和更高的适应性。在这个权重向量之中,核心元件展现了人脸的独特外观标识,因此这种技术被普遍称作特征脸分析方法。
Belhumeu推出了一款被称作LDA的创新算法。这一算法选取的特征脸空间实际上是一个分布在类之中的正交向量,这样的向量有效地减少了对分类的误差和干扰,进而可以更精确地鉴别不同类别的人脸,同时受到的光照度和姿势变动的干扰相对较为微小。
林妙真提出了一个创新的建议:通过应用深度学习技术,从多个分辨率不同的图像中提取相似特征,并且成功地解决了姿态改变这一非线性问题,实现了对多种姿态且低分辨率图像的高效鉴别。此外,本研究还建议使用局部区域的信息来识别人脸,这可以通过在多个样本数据集中的训练,获得一个新的特征向量,从而更好地描述人脸在各个视角中的状态分布情况。我们的研究目标是在此模型上开发一种既迅速又高效能的人脸识别方法。这种算法是在对许多样本进行培训和研究的基础上,构建出一个普遍适用的面部检测模型。经过众多的实验测试,我们确认这算法具备极为出色的精确性。相对于其他面部识别技术,本算法展现了更强的稳健性,并且能够抵抗光照的影响。在实际应用的场景下,该技术能够被推广应用于多个不同的应用场景。该算法能精确地从图像序列中获取待测目标的外形特征,从而实现优越的检测成果。然而,这种方法的局限性在于它的算法复杂性很高并且识别的步骤通常比较慢。
在乔杉及其团队的研究报告中,他们设计了一个依赖于BP神经网络的新型面部辨识技术。这项技术结合了模式识别的主要分析理论以及人工神经网络,用以解决人脸识别领域的难题。这一技术运用了主成分分析策略,以提取面部的特殊性质属性,并把这些特性录入优化过的BP神经网络以进行更深入的训练。经过对经过训练的网络模型的实验验证,我们发现这个方法能实现相当高的检测识别效率。这种方法不但成功地简化了网络构架,减轻了运算复杂性,还保证了超过90%的识别准确度。当前,这一技术已经普遍应用在多个不同领域的身份鉴定和身份核实过程中。然而,由于我们只能挑选数量有限的训练样本,并且在学习过程中有必要对参数做出微小的调整,因此无法实时更新新的人脸数据库。
洪子泉以及其团队在文章中详细展示了一种依赖于奇异值分解(SVD)手段进行面部识别的新方法。经过深入的研究与分析传统特征抽取方法,我们提出了一种融合奇异值计算和神经网络技术的脸部识别方案。该技术方法首先对我们采集到的人脸图像进行了初步解析,随后采用奇异值技术,从而成功地获得了一个创新的特征值。奇异值的稳定性非常出色,使其在人类面部识别中发挥了良好作用。鉴于人脸图像中的奇异性既稳固又不会改变,这使其成为提取人脸特性的强大方法,并且采用Bayes模型进行了人脸图像的分类工作。
Samari荣誉地成为了首位在行人面部辨识场景中采用隐马尔可夫模型(HMM)的研究人员。考虑到目前绝大多数基于统计手法的算法对噪声的敏感性和高计算量,我们提出了一种全新且适用于人脸识别的快速自适应高斯混合模型方案。在该模型框架内,人脸被分割成从顶端至底端的五个独立部分。然后,在每一张矩形窗口上,像素被按照列向量的方式排列,并选用灰度值作为进行识别的关键参数。每一行相邻两行间都有一段固定距离,这种间隔不仅使从它们中提取出的特性更为贴近人的视觉感知,还有助于减少噪音和光线变化的不良影响。考虑到每一个像素都代表了独特的特征向量,借助它展示图像中的精细细节有助于更准确地进行识别。为了确保算法能够更好地在复杂环境下运行,我们决定运用随机采样一致性方法对输入样本进行前期处理,从而使所提取的特征值更为精确和可靠。在执行模型识别过程中,我们对已经训练好的模型的几率进行了估算,然后基于这些概率进行比对,最终选择几率最高的模型作为匹配的结果。实验表明,该方法能够有效地提高识别率并降低误识率。虽然基于HMM的人脸识别技术在面对光线、姿态和面部表情时展现出了出色的鲁棒性,但其实施过程相对较为繁琐。最近几年提出了一些新的方法来改进传统的人脸识别技术。综合来看,人脸识别技术在过去的几十年里已经取得了显著的进展。这是一个跨学科且充满挑战的前沿领域。随着技术的进步和硬件性能的增强,多种生物特征的融合[26]、三维人脸建模以及时变特征的提取和消除将成为人脸识别技术未来的发展方向。
2 人脸识别理论分析与研究
2.1 人脸识别算法
HLK-KT210是利用卷积神经网络技术来实施人脸的识别任务,此网络系统包括卷积层、线性整流层、池化层以及全连接层。首先对给定的图片进行预处理,以获得一个低维的样本集。在卷积层内部,我们使用了卷积核以便从图像中提取独特特征,并进一步将这些特征转变成二进制的外形形态。在卷积核基础上,通过采用非线性滤波方法来消除噪音,成功地构建了优化过的网络结构。卷积神经网络根据接收的图像属性将神经元划分为三个独立的维度,即width、height和depth。每个深度学习的部分都会呈现出一个与其对应的不同维度的输出矢量。所提供的图像由三个主要维度组成,它们分别是像素数量、亮度和颜色。为了精确地表述这三种特定类型的神经元,我们推出了一个新颖的学习方法。当图像尺寸扩大至30x30x4(rgb)的规格,接收到的神经元会展示30x30x4的维度和4的特性特性。为了能在众多的训练样本里快速并准确地获得分类器,大规模的训练是不可或缺的。因此,在培训活动中,我们有责任从输入的数据中选择和提取特征,经过分析特征的相似度后,挑选出最佳的解决策略作为该模型的核心输出。文章使用了一个基于深度学习框架的算法来检测输入图片中的面部特征分类。简而言之,通过将输入的人脸信息转化为向量形式,并执行一系列卷积运算,我们可以实现全连续分类,然后据此计算出分类的可能性。这样,我们就可以得到一个人脸向量表示,它具有相同人的向量距离较小,而不同人的向量距离较大的特性,从而实现人脸识别的目标。

图2.1 系统总体设计框图

2.2 人脸识别技术
自动人脸识别技术在安全管理和人与机器的互动等多个领域都得到了广泛的运用。目前的人脸识别方法主要包括特征提取、特征选择和分类识别三个步骤。在早些时候,面部识别技术主要是建立在基于面部特征的几何属性上,如大小、位置、距离和形状等,同时还有利用模板匹配技术,如对待鉴定图像和标准模板进行比较来进行人脸识别。基于这两套识别手段,近些年来新兴了统计学习这一新的识别技术。随着计算机视觉以及图像处理技术的持续优化和发展,基于统计学习理念的机器学习手段已崭露头角,变成了人脸识别学研究中最为充满活力的一个子领域。在当前的背景环境中,本研究首先梳理了人脸识别领域的基础研究动态,然后对国内和国际最近几年在人脸识别研究方面所取得的最新进展做了综合性的总结,最终也对人脸识别技术的未来走势提供了展望。经过多年深入的研究和实践,人脸识别这个专业领域内已经形成了几个核心的研究课题。此文章开篇简洁描述了当前在国内外人脸识别领域所取得的进展,随后对近些年在人脸识别领域获得显著发展的新兴算法进行了重点概述。在人脸识别的领域里,主元分析基础上的特征脸技术被公认为一项非常有成效的方法,这也引起了人脸鉴别领域研究的第二轮热度;尽管神经网络作为人脸识别领域的特征提取技术被大量使用,但因为其训练时间偏长,无法满足实时处理需求。Fisher面部技术基于特征面部特征,融合了类别之间的共性和区别信息,因此,投影子空间被视为分类的最佳选择;弹性图匹配法为一种面部辨识手段,其能够根据特定的局部信息处理多样化的角度和姿态变化;融合这两种手段,我们提出了一种基于升级版弹性图匹配法的神经网络方案,用于人脸表情的识别,并已经实现了优异的效果。在抗干扰和错误容忍度方面,神经网络分类器展现了卓越性能。我们将前述两点融合,设计了一种以局部特征分析为基础的人脸鉴别技术。局部特性分析技术在其设计阶段,深度地纳入了面部独有的特质以及这些特质之间的空间关联。所以,当我们基于网络模型来提取人脸特征时,已经取得了显著的成效,但是,在此基础上也存在着提升识别准确性、降低计算资源等相关问题。在此特定领域,我们已经构建了若干比较系统的理论框架和计算技巧。近几年内,我们对于图像分割、边缘识别及形状特点抽取的文献进行了深入的回顾和归纳。近期内,这些提出的建议所关联的技术都经历了更深度的研究与深入的讨论。在众多技术中,人脸识别因其作为一个至关重要的生物学识别方式而受到了广大群众的关注。这篇研究文章全方位地复盘了近些年在国内外关于人脸辨识与分类领域的学术研究与进展。从人脸的识别、检测阶段、到识别,直至彻底识别人脸,各个步骤中都采用了多种独特的手段进行优化。在分类器设计过程中,众多研究都偏向于采纳基于神经网络、支持向量机及多分类器的策略。在众多方法中,采用卷积网络以及多层次感知器的手段是相对普遍接受的一种。过去几年,随着深度学习的深入探索,利用卷积网络技术的人脸识别技术开始受到广大研究者的关注。现在,针对人脸特点的提取与应用方法层出不穷。但是,鉴于人脸的高度复杂性,目前这些技术均显示出某些不足之处。除先前讨论的静态图像中的人脸识别问题外,三维图像和动态脸的识别技术也是人脸识别研究的核心环节。

图2.2 基于人脸识别技术的智能门禁系统
在近些年里,数字化图像技术在各个领域都已经得到了广大的使用,特别是在诸如公安系统(犯罪者的识别)、保安监视系统和信用卡核实等关键部门。鉴于生物识别技术具备极高的应用前景,这一技术正在迅速转变为人工智能领域的核心研究议题。生物特性鉴定系统由于其无触碰、成本效益高和处理速度快的特性,已经被广大领域采纳作为身份验证和保障安全的工具。识别生物特性的技术主要包括了基于人类面部以及眼部特征进行鉴别的各种手段。在众多方法中,面部识别被广泛认为是当前最成熟的,并得到了众多的使用,它能够精准地确认并核实个人的身份信息。在人体生物的众多特性中,通过人脸数据进行身份鉴定被视为最为直白和自然的方法来完成。人脸识别技术,作为生物检测的创新方式,展现出广阔的发展潜力。与指纹、视网膜、虹膜和基因等其他生物标志相比,人脸的识别特征更加清晰直观且对用户来说非常友好,因此受到了大量用户的青睐与关心。
人脸鉴别技术依托于人脸的特殊属性,主要用于个体身份的识别和确认。伴随着计算机视觉技术的进步和壮大,基于图像处理技术的面部识别已逐渐变成模式识别这一领域的研究焦点之一。该创新技术是基于生物属性而发展的,通过集成多个光学成像方法,从摄像机中成功捕捉了待辨认对象的面孔,并对其进行了精细的处理和分析,从而深入挖掘该人物是否具有真实身份和外貌特征的详尽资料。其核心流程涵盖了肤色的检查与切割、确定眼部的位置、从面部特点中进行抽取以及随后的分类。面部特征具有的独有性质不仅仅局限于某一个特定的面部区域或结构,更为关键的是,这些特征在位置、距离、角度、数量和形态等多重互动关系中也都有所表现,并且这些面部特征通常具有一定的稳定特点。当我们运用这种关联,我们能够基于收集的众多个人资料来识别一个人的真正身份。因此,这套系统可以迅速而又准确地鉴别出一个人的身份,它还能提供如姓名、性别、年和身高等详尽的信息,帮助用户在日常生活中更加轻松地辨认自己的身份。人脸识别技术,作为一种日益崭露头角的计算机模式辨识方式,拥有无需人为介入、非接触方式识别且实时响应迅速的优势。要想确认一个人的身份,你只需利用某些特定工具去捕捉他的面部特征,然后把这些特征与先前存储的样本进行比对,很快你能够确定他的真实身份。因此,人们把这种以“人”为核心的信息交流称为“人面像识别技术”。与众多的生物识别方法相似,人类的面部识别技术也是近些年在全球迅速崭露头角的一种安全手段。其基本原理就是利用特定人群中某些特殊人员特有的面部形态结构及其生理生化指标,来推断该群体成员是否属于同一社会集团的成员,或者是否是某个国家或地区某一类职业的工作人员。该技术主要依赖于面部的二维或三维图像处理以及模式识别来实现身份的识别或验证。它的特点包括非侵入性、对目标的干扰较少以及隐蔽的识别手段。因此,在反恐、追踪、追捕、打击拐卖、人口控制和银行管理等多个领域,它都展现出了不可替代的应用潜力。。
2.3 支持向量机的人脸识别算法
人脸识别技术应涵盖学习与识别这两个关键步骤,具体流程如图1所示。在人脸识别过程中,首先要从输入的原始图片提取出人脸信息,然后进行特征提取、降维以及归一化处理。在训练过程中,我们构建了一个依赖于支持向量机的分类结构,其中关键的阶段包括初步处理人脸图片,识别人脸的特定部分,并采用肤色和几何特性收集训练后的人脸特征数据。鉴于使用了基于高斯核函数的技术来在训练集中获取最佳权值,这种算法非常适合解决由于光照改变等原因导致的人脸识别精度问题。我们对训练样本集中每位参与者在不同位置的距离进行了数值分析,据此构筑了一个用于判断测试对象是否展示了类似或一致的面部情感特质的相似度矩阵。为了证明这一算法具有显著的有效性,我们选择在人脸识别的实验环境内执行该算法。借助于人脸特征向量的学习数据,我们成功地构建了一个特定为单一用户群体打造的支持向量机分类模型。这个分类器将输入到分类器的人脸数据转化为代表各个对象相似性的一组统计指标,并据此选择合适的内部参数,从而增强了模型的泛化表现。分类器识别阶段,我们从存储的指纹数据库中筛选了与样本集中高度吻合的片段,并将这些片段用作分类器的训练材料。通过实验验证,利用支持向量机理论并结合人脸特性向量进行的人脸辨识技术,能够实现优异的识别成果。在目标验证阶段,最初的步骤应当是依据被检测对象宣称的身份来识别他们所依赖的支持向量机分类模型和结构。为了增强系统的辨识能力,本篇文章推荐了一套利用多重传感器信息合并技巧来对此识别系统进行提升的策略。基于此,我们对目标人脸的图像做了基础处理,以便识别人的脸部某一特别区域。为了降低计算的复杂度,我们采纳了一种高效的模板匹配技术在人脸图像上执行特征的抽取,最终构建了一个涵盖众多关键点的二维和矩阵。紧接着,我们将运用肤色以及几何特性来提取人脸的关键特征向量。这些特定的特征向量将被传输至某一专门的制造模块和门解锁控制单元。这主要用于管理点门的开关以及执行报警等相关操作。利用前述研究所得,我们搭建了一个依托于人脸识别技巧的门禁控制系统。这个系统主要是由门上的禁闭器与摄像头两个主要部分所构成。视频的展示单元拥有即时呈现以及记录的特性。该体系主导门禁的开关和解锁操作。该系统代表了一套智能化的门禁控制系统,其研发的核心是人脸鉴别技能。这套系统能够被广泛采用于多个场景,包括旅馆、银行等,并展现出其显著的实际应用价值。图2.3详细地展示了门禁系统的各个结构组件。通过采用人脸识别技术进行入访者的辨识,我们实现了对出入门等各种行为的有效管理。该文章简要描述了门禁系统中各种硬件组成,并展示了与之相关的软件流程图。其核心组件涵盖了:一个摄像头;2 RS232/485型号提供的连接工具;这一设备配置了三个独立的控制组件,以及与之兼容的电源锁;系统的硬件部分选择了模块化的设计思路,这使其配置变得更为轻松。WINDOWS98驱动软件及一个为图像呈现、面部辨识、管理、处理及驱动功能特别打造的多媒体应用平台。

图2.3 人脸识别流程图

2.4 人脸识别门禁系统的功能及通信协议
此系统所使用的摄像机是与操作系统通过一个独特的接口进行联接的。该系统具有出色的功能,包括用户身份的确认、考勤系统的管理以及出入的控制,显示出高度的安全与可信度。本文开篇明确指出人脸检测技术在门禁控制体系中的关键地位,随后深入阐述了一个综合性的人脸检测策略和它的执行程序。这个算法结合了肤色与特征点的识别手段,展现出了很高的精确性与鲁棒性能。在针对人脸识别的门禁系统设计中,接口需求可以被归纳为两个主要环节:第一步是应用软件所需的接口设计,接下来是通信的协议设计。
2.4.1 应用编程接口
该系统作为软件组件的一种设计,被嵌入到各种相关的应用系统中,以提供安全的用户身份验证服务。通过在该软件平台上开发一个基于身份和密码相结合的用户登录认证系统来完成对网络终端的访问控制,并保证用户信息及数据的完整性、机密性以及不可否认性。为了达到这个目标,该系统的客户端需要通过接口函数来提供注册和认证的功能。
通信协议
通信协定代表了通信所有参与者的共同认知,并且没有一个固定的模板或途径,是开发者可以自己来制定的。该机制不仅为沟通的双方提供信息交流的便利,同时也能够用来传递某些数据、指令等。通信协议是该系统核心的一个组件,并且它直接决定了系统是否能够稳定运行。一般来说,软件被广泛应用来构建通信协议。在实践应用中,外界的各种干扰元素常常引发操作不准确的情况,因此,通信协议必须具备有效的性能以抵御这些类型的干扰。随计算机技术日益先进,我们对通信网络有了更为严格的标准,确保通信协议能够支持高速的数据交流也成为了关键。虽然存在许多不同的通信协议形式,但串行和并行的通讯协议被视为最常见的两类。串行通讯的协议一般采用二进制编码方式,相较之下,并行通讯协议需要依赖大量字符和图形来作为数据传递的媒介。为了保证通信协议的稳固性,我们常常采用多种策略进行操作,其中包括在发送数据之前加入同步位,数据发送后再添加停止位,还包括增大校验字节等多种方法。这篇文章详述了一个基于单片机技术搭建的通信安全系统的构建方式,该系统能深入分析和评估所接收的数据包,通过特定的软件技术手段来确保通信双方的数据传输安全。本研究首先对通信系统进行了全面的结构概述,接着对通信安全系统的每个组成部分的设计理念和具体操作方法进行了深入的说明。该系统的网络通信协议是依赖于串行接口来操控单片机的,而非直接与所有的网络通信硬件互动。因此,这份通信协议无需依赖于额外的芯片资源,更不必编程来创建特定的软件。因此,该通讯协议在抵抗干扰和保持可靠性上显示得尤为出色,能在多种复杂的使用场景中稳定运行。此外,该通讯协议也表现出了出色的扩展能力,能适应多种网络用户在通讯功能上的具体需求。在这篇文章里面,我们制定了以下类型的通信协定。
该系统的初衷是采用人脸特征向量作为身份确认工具,以验证用户的身份,进而确认该用户是否真的满足其所声称的合法用户条件。现在,人脸识别技术已经上升至模式识别、计算机视觉技术、图像处理以及人工智能等多个学科交叉探讨的焦点领域之一。鉴于人脸识别技术在生物基特征鉴别方面拥有巨大的发展空间以及极高的准确性,它可以在多个应用场景作为经典密码或密钥等工具的有力替代方案使用。人脸识别技术不仅为智能交通解决方案的设计,还为安防监控以及身份鉴定提供了一种全新的技术途径。因此,考虑到身份校验和脸孔识别技术所拥有的独特属性,此系统必需具备若干关键特性。
(1)具备人脸识别以及特征抽取的功能。在执行行人脸识别的程序时,我们仅仅须输入图像内部的人脸特征向量。鉴于人类的脸部表情具有高度多样性和复杂性,以及背景往往保持不变,这些因素共同给人脸识别工作带来了巨大的挑战。通常,输入的图像不仅仅包含了人脸的图像,还综合了背景的细节。鉴于视频监控系统需要高度的实时反应和复杂的环境,处理其所获取的视频数据必须面对人脸特征的自适应识别和提取这些关键问题。所以,当我们开始行人的面部标识前,首先要的是从接收到的图片中提取出人脸的特征。人脸由于其独特且高复杂性的生物特征,使得提取其独特特征变得尤为困难。本篇论文主要探索在视频监控背景下,如何有效地自动化地匹配面部的关键特征点。为了有效地捕捉人脸内的特征向量,我们需要有一个可以基于视频流进行实时人脸检测、追踪和特征抽取的功能。
(2)具备面部识别的特性。为了在提供用户密码和人脸图像信息的情况下快速完成身份验证,该系统必须具备实时、高效和精确的人脸识别能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值