目录
时间调制阵列基本原理
时间调制阵列结构
传统阵列通信系统的天线阵列做波束赋形都采用空域幅相加权的方式,而采用的加权方法时使用幅度衰减硬件以及移相器。这种方式的劣势在于这种数字器件的调相量及衰减量都是离散的,低位数的器件带来加权精度不足的问题,位数高的器件带来成本问题,响应速度问题。
时间调制阵列则提供了一种新型的幅相加权方法。通过在每个天线通道连接单刀单掷开关,在时域控制发射\接收信号的周期性导通关闭。达到幅度相位加权的目的。
N个天线通道的单刀单掷开关的调制序列如下:
其中为射频开关的调制周期,
为单位周期内的调制函数
为第n个天线在单位周期内射频开关开始导通的时刻,
为第n个天线在单位周期内射频开关断开的时刻。根据傅里叶级数理论,
可以展开如下:
其中,
为第k次谐波的傅里叶系数,有
则可以根据上式确定各次谐波的幅相加权值。值得注意的是在中心频率(0次谐波)处只有幅度加权而没有相位加权,一般中心频率用作低副瓣波束综合,而正一次谐波用作波束扫描。
经典结论
幅度调控量与相位调控量
与调制时序的表征参数的关系如下:
缺陷及研究方向
空时调制的主要缺陷在于辐射效率的问题。一般来讲,由于调制时序的表征参数有限,导致自由度受限,使得能够利用的辐射频率处于中心频率或-1\+1次边带频率,而其余边带频率的存在降低了辐射效率,在某些场景下还会影响检测。所以主流的研究方向是通过改进通道结构,调制序列的方式去抑制无用的边带辐射。
差分进化算法优化边带辐射
差分进化算法介绍
差分进化算法是遗传算法的变种,用于连续域内搜索最优值对应的解,关于遗传算法的详细介绍,推荐B站视频:组会-差分进化算法及深度学习的应用_哔哩哔哩_bilibili
差分进化算法优化边带辐射的实现
定义适应度函数为无用边带辐射功率之和,调制时序表征参数、
作为染色体基因,输入差分进化算法,进行迭代,即可得到"最"低边带辐射的调制时序表征参数,从而确定调制时序。
周期0/-1/1幅度调制
基本结构及调制序列

经典结论
1. 调制后中心频率分量的幅度为0
2. 正一次谐波分量的幅度调控量和相位量调控量
与
,
的关系如下:
IQ单边带调制
通道基本结构及调制序列
0\-1\1周期调制虽然达到了正一次谐波的幅相一体化控制,并抑制了中心频率的辐射。但对负一次谐波以及其他边带谐波没有起到更好的抑制作用。故而有IQ单边带调制方式,达到了对正一次谐波幅相一体化控制的目的的同时,更大限度的抑制了其他边带的辐射功率。
其通道的基本结构如下所示:
经典结论
1. 当下式成立时,可以抑制偶次谐波分量