基础知识1:Jones matrix

 一、 假设Jones matrix 为:

   则输出电场和输入电场的关系为:

   其中T具有对称性和酉性

    因此,对于正输入光波的输入输出电场的关系为:

     两式子相加:

     其中: Ex 和 Ey 为电场的 x 分量和 y 分量,\ast 表示复共轭  

     从 (1a) 和 (3) 可得:

       因此,通过给定Ein 和 Eout,我们可以得到 Txx 和 Txy,并且结合对称性和酉性条件可计算 Txy和Tyy

       当 (4)  式左侧矩阵行列式为 0 时,则

       考虑亚波长结构将两个独立的相位分布强加于两个正交偏振的光波上,的情况,入射光场与出射光场可以描述为:

       其中,phi 1 和 phi 2为任意的附加相位。当存在一组正交的偏振光时,可以认为亚波长结构在一组正交偏振入射下实现了两种不同的相位分布

       给定任意一组正交偏振的入射光Ein1 和 Ein2 , 以及出射场 Eout1 和 Eout2,可以唯一确定琼斯矩阵,可以实现正交偏振的独立调控。

       二、 Jones Matrix

        其中,Jij 表示光学器件的复转换系数,模值表示振幅大小,角度值表示相位变化。下标 ij 表示入射光 i 分量转化为出射光 j 分量。

       三、多通道调制Jones Matrix

        1、双通道调制

              假设入射 x、y 偏振光

         2、三通道调制 (旋转琼斯矩阵)

              假设入射 x、y 偏振光

              phi3 = 2*phi2 - phi1 + pi 

               圆偏振光入射 

    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值