抗锯齿算法

以下是按照你的要求对三种抗锯齿算法详细展开介绍(包含C语言代码示例实现,不过实际应用场景中这些算法实现往往更复杂且可能依赖于特定图形库等,以下示例只是简单示意原理):

FXAA(Fast Approximate Anti-Aliasing)

原理

FXAA通过检测图像中的边缘,并对边缘区域的像素进行模糊处理,以达到减少锯齿的效果。它主要在最终渲染出的图像像素层面操作,通过分析像素的亮度、颜色梯度等信息来判断边缘,然后基于设定的算法对周边像素做加权平均等操作来模糊锯齿,使边缘看起来更平滑。

概念

它是一种快速且近似的抗锯齿算法,侧重于以较低的计算成本快速改善图像的锯齿外观,牺牲一定的图像精度换取速度,适用于实时渲染场景。

步骤
  1. 边缘检测:遍历图像中的每个像素,计算该像素与其相邻像素在亮度、颜色等方面的差异(例如可以通过计算像素之间的梯度值),以此判断是否处于可能的边缘区域。
  2. 滤波处理:对于确定为边缘区域的像素,根据其周边像素的颜色等信息,采用特定的滤波核(比如简单的均值滤波核或者加权均值滤波核)来对其进行模糊操作,改变其颜色值,使得边缘处锯齿不那么明显。
  3. 输出处理后的图像:将经过滤波处理后的所有像素重新组合成新的图像,完成抗锯齿操作。
分类

一般可分为不同的强度级别,强度越高,对锯齿的模糊处理越明显,但图像可能也会变得越模糊,不过并没有像基于采样那样严格的分类方式。

应用

常用于实时性要求高但硬件资源有限的场景,比如很多游戏中的实时画面渲染,尤其是在移动游戏或者对硬件配置要求不希望过高的桌面游戏中,能快速提升画面的视觉感受。

C语言代码实现示例

以下是一个非常简单的示意代码,用于对一个简单灰度图像进行基本的FXAA类似处理(实际应用远比这复杂,仅供理解基本思路):

#include <stdio.h>
#include <stdlib.h>

// 定义图像结构体,包含宽度、高度和像素数据(这里简单用一维数组表示二维图像)
typedef struct {
    int width;
    int height;
    unsigned char *pixels;
} Image;

// 函数用于加载图像(这里只是示意,实际要根据图像格式读取,假设传入的是已经解析好的灰度图像数据)
Image loadImage(int width, int height, unsigned char *data) {
    Image img;
    img.width = width;
    img.height = height;
    img.pixels = (unsigned char *)malloc(width * height * sizeof(unsigned char));
    for (int i = 0; i < width * height; i++) {
        img.pixels[i] = data[i];
    }
    return img;
}

// 释放图像内存
void freeImage(Image img) {
    free(img.pixels);
}

// 计算像素梯度(简单示例,采用水平和垂直方向差分),返回水平和垂直梯度值
void calculateGradient(int x, int y, Image img, int *gradientX, int *gradientY) {
    int width = img.width;
    int height = img.height;
    // 水平方向梯度(简单差分)
    if (x < width - 1) {
        *gradientX = (int)img.pixels[(y * width) + (x + 1)] - (int)img.pixels[(y * width) + x];
    } else {
        *gradientX = 0;
    }
    // 垂直方向梯度(简单差分)
    if (y < height - 1) {
        *gradientY = (int)img.pixels[((y + 1) * width) + x] - (int)img.pixels[(y * width) + x];
    } else {
        *gradientY = 0;
    }
}

// 判断是否是边缘像素(简单根据梯度绝对值之和是否大于阈值判断,阈值可调整)
int isEdgePixel(int x, int y, Image img, int threshold) {
    int gradientX, gradientY;
    calculateGradient(x, y, img, &gradientX, &gradientY);
    int gradientMagnitude = abs(gradientX) + abs(gradientY);
    return gradientMagnitude > threshold;
}

// 对边缘像素进行简单模糊处理(这里用简单均值滤波,取周围3x3区域像素均值)
void blurEdgePixel(int x, int y, Image img) {
    int width = img.width;
    int height = img.height;
    int sum = 0;
    int count = 0;
    for (int j = -1; j <= 1; j++) {
        for (int i = -1; i <= 1; i++) {
            int newX = x + i;
            int newY = y + j;
            if (newX >= 0 && newX < width && newY >= 0 && newY < height) {
                sum += img.pixels[(newY * width) + newX];
                count++;
            }
        }
    }
    img.pixels[(y * width) + x] = (unsigned char)(sum / count);
}

// 执行FXAA处理的主函数
Image FXAA(Image inputImage, int threshold) {
    Image outputImage = inputImage;  // 先复制输入图像作为输出的基础
    for (int y = 0; y < inputImage.height; y++) {
        for (int x = 0; x < inputImage.width; x++) {
            if (isEdgePixel(x, y, inputImage, threshold)) {
                blurEdgePixel(x, y, outputImage);
            }
        }
    }
    return outputImage;
}

你可以使用以下方式调用这些函数(示例调用,假设已有合适的图像数据传入):

int main() {
    int width = 100;  // 假设图像宽度
    int height = 100; // 假设图像高度
    unsigned char *imageData = (unsigned char *)malloc(width * height * sizeof(unsigned char));
    // 这里应该填充实际的图像数据,比如从文件读取等,此处省略
    Image inputImage = loadImage(width, height, imageData);
    Image outputImage = FXAA(inputImage, 10);  // 阈值设为10,可调整尝试不同效果
    freeImage(inputImage);
    freeImage(outputImage);
    free(imageData);
    return 0;
}

MSAA(Multi-Sample Anti-Aliasing)

原理

在图形渲染阶段,针对每个像素点进行多次采样(通常是在像素的不同子区域采样)。例如,原本一个像素只记录一个颜色值,MSAA会在这个像素范围内划分多个采样点,记录多个颜色、深度等相关信息,然后根据这些采样样本进行汇总计算(比如取平均等),来确定最终该像素呈现的颜色,这样可以更准确地描绘图形边缘与背景之间的过渡,减少锯齿现象。

概念

基于多重采样的抗锯齿技术,通过增加采样数量提高对图形边缘的描绘精度,以实现高质量的抗锯齿效果,但相应地会增加计算量和硬件资源消耗。

步骤
  1. 设置采样参数:确定每个像素的采样数量(如 2x、4x、8x 等,表示每个像素划分的采样点数倍数),以及采样点在像素内的分布方式等相关参数。
  2. 渲染采样:在图形渲染过程中,对于场景中的每个物体,按照设定的采样参数,在每个像素的多个采样点处分别获取颜色、深度等渲染信息。比如在渲染一个三角形时,对于三角形覆盖到的像素,其各个采样点会记录对应位置与三角形及背景相关的颜色和深度等数据。
  3. 汇总计算:当所有采样信息收集完成后,针对每个像素,根据其多个采样点的颜色、深度等数据,通过特定算法(常见的如加权平均等)来计算出该像素最终要显示的颜色,使得图形边缘的过渡更加自然平滑,减少锯齿。
  4. 输出渲染后的图像:将经过处理后的像素颜色值组成最终的图像进行显示。
分类

按照采样倍数分类,常见的有 2xMSAA、4xMSAA、8xMSAA 等,倍数越高,采样点数越多,抗锯齿效果越好,但对硬件资源(如显卡的计算能力、显存等)的消耗也越大。

应用

广泛应用于对画面质量要求高的图形渲染场景,像专业的 3D 游戏、3D 建模软件中的渲染视图、动画制作中的高质量渲染输出等,只要硬件条件允许,能极大提升图像边缘的细腻程度和整体视觉质量。

C语言代码实现示例

以下是一个极度简化的示意代码,用于模拟MSAA在一个简单场景下的基本原理(实际中要结合图形渲染管线等复杂操作,这里只是示意概念),假设是渲染一个简单的矩形到一个帧缓冲(用二维数组模拟):

#include <stdio.h>
#include <stdlib.h>

// 定义帧缓冲结构体,模拟存储渲染后的图像数据(这里简单用二维数组表示)
typedef struct {
    int width;
    int height;
    int **buffer;  // 二维数组存储每个像素颜色值(这里简单用整数表示颜色,实际更复杂)
} Framebuffer;

// 初始化帧缓冲
Framebuffer initFramebuffer(int width, int height) {
    Framebuffer fb;
    fb.width = width;
    fb.height = height;
    fb.buffer = (int **)malloc(height * sizeof(int *));
    for (int i = 0; i < height; i++) {
        fb.buffer[i] = (int *)malloc(width * sizeof(int));
        for (int j = 0; j < width; j++) {
            fb.buffer[i][j] = 0;  // 初始化为背景色(这里假设为0)
        }
    }
    return fb;
}

// 释放帧缓冲内存
void freeFramebuffer(Framebuffer fb) {
    for (int i = 0; i < fb.height; i++) {
        free(fb.buffer[i]);
    }
    free(fb.buffer);
}

// 模拟在一个像素内进行采样(这里简单返回多个随机采样值,实际要根据渲染情况获取真实值)
int *samplePixel(int x, int y, int numSamples) {
    int *samples = (int *)malloc(numSamples * sizeof(int));
    for (int i = 0; i < numSamples; i++) {
        samples[i] = rand() % 256;  // 随机生成0 - 255之间的颜色值,模拟采样颜色
    }
    return samples;
}

// 对采样值进行汇总计算(这里简单取平均,实际根据需求用更合理算法)
int calculateFinalColor(int *samples, int numSamples) {
    int sum = 0;
    for (int i = 0; i < numSamples; i++) {
        sum += samples[i];
    }
    return sum / numSamples;
}

// 模拟渲染一个矩形(简单用特定颜色填充覆盖区域,且应用MSAA采样计算)
void renderRectangle(Framebuffer fb, int x, int y, int width, int height, int rectColor, int numSamples) {
    for (int j = y; j < y + height; j++) {
        for (int i = x; i < x + width; i++) {
            int *samples = samplePixel(i, j, numSamples);
            int finalColor = calculateFinalColor(samples, numSamples);
            fb.buffer[j][i] = finalColor;
            free(samples);
        }
    }
}

// 执行MSAA渲染的主函数(这里只渲染一个矩形示例,实际可扩展到复杂场景)
Framebuffer MSAA(int width, int height, int rectX, int rectY, int rectWidth, int rectHeight, int rectColor, int numSamples) {
    Framebuffer fb = initFramebuffer(width, height);
    renderRectangle(fb, rectX, rectY, rectWidth, rectHeight, rectColor, numSamples);
    return fb;
}

以下是简单调用示例:

int main() {
    int width = 200;
    int height = 200;
    int rectX = 50;
    int rectY = 50;
    int rectWidth = 100;
    int rectHeight = 100;
    int rectColor = 128;  // 假设矩形颜色
    int numSamples = 4;  // 4xMSAA示例,可调整采样倍数
    Framebuffer outputFramebuffer = MSAA(width, height, rectX, rectY, rectWidth, rectHeight, rectColor, numSamples);
    // 这里可以添加代码输出帧缓冲中的图像数据等,比如保存为文件等,此处省略
    freeFramebuffer(outputFramebuffer);
    return 0;
}

TAA(Temporal Anti-Aliasing)

原理

利用多帧图像间的时间相关性来实现抗锯齿。它会记录物体在连续多个帧中的位置、运动状态以及对应像素的颜色等信息,然后通过分析这些跨帧的数据,根据物体的运动轨迹和像素变化情况,采用特定算法(比如加权平均、基于运动矢量的融合等)将不同帧中同一像素位置的信息进行融合处理,使得在动态场景下,物体边缘的锯齿能够随着时间的推移被有效平滑掉,让画面在连续播放时看起来更平滑自然。

概念

是一种基于时间维度的抗锯齿方法,非常适合处理动态画面,借助历史帧信息来优化当前帧的抗锯齿效果,在一定程度上能在不过分消耗硬件资源的情况下提升动态场景中的画面质量。

步骤
  1. 帧数据存储:在渲染过程中,除了当前帧的图像数据外,开辟缓冲区来存储之前若干帧(一般是最近的几帧)中每个像素的相关信息,包括像素颜色、物体深度、运动矢量(可通过计算物体在帧间的位移等方式获取)等。
  2. 运动分析:对于当前帧中的每个像素,结合之前帧存储的数据,分析对应物体的运动情况,计算出其运动矢量,判断物体是如何在帧间移动的,以及该像素对应的物体表面部分在不同帧中的变化情况。
  3. 融合计算:根据运动分析的结果以及设定的融合算法,对当前像素与之前帧对应像素位置的颜色等信息进行加权平均或者按照运动矢量引导的方式进行融合,比如对于运动缓慢的物体部分,可能给予历史帧数据较高的权重进行融合,对于运动快的部分则适当调整权重,使得像素颜色过渡更自然,减少锯齿。
  4. 更新帧数据:将当前帧处理后的像素数据以及相关运动等信息存储到历史帧缓冲区中,替换掉最早存储的那帧数据(实现一个循环缓冲区的效果),为下一帧的处理做好准备。
  5. 输出处理后的图像:将经过融合处理后的当前帧图像进行输出显示。
分类

可以根据融合算法的不同、历史帧使用数量和权重分配方式等进行分类,不同的分类方式适用于不同的动态场景特点和画面质量要求等情况。

应用

主要应用于具有动态画面的场景,尤其是实时渲染的 3D 游戏中,像第一人称射击游戏、动作游戏等,在这些游戏中,角色、场景物体等不断运动,TAA 能很好地保证画面在动态过程中的抗锯齿效果,提升玩家的视觉体验。

C语言代码实现示例

以下是一个简化的示意代码,用于模拟 TAA 在简单动态场景下的基本操作(实际远比这复杂,要结合游戏引擎等复杂的渲染和数据管理体系,这里只是展示原理),假设是一个简单的点在屏幕上移动的场景:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// 定义图像结构体,包含宽度、高度和像素数据(用一维数组模拟二维图像)
typedef struct {
    int width;
    int height;
    unsigned char *pixels;
} Image;

// 加载图像函数(这里简单返回给定尺寸的空图像,实际应从文件等加载真实数据)
Image loadImage(int width, int height) {
    Image img;
    img.width = width;
    img.height = height;
    img.pixels = (unsigned char *)malloc(width * height * sizeof(unsigned char));
    for (int i = 0; i < width * height; i++) {
        img.pixels[i] = 0;  // 初始化为黑色背景
    }
    return img;
}

// 释放图像内存函数
void freeImage(Image img) {
    free(img.pixels);
}

// 定义点结构体,表示屏幕上移动的物体(这里简化为点)
typedef struct {
    int x;
    int y;
} Point;

// 初始化点位置
Point initPoint(int startX, int startY) {
    Point p;
    p.x = startX;
    p.y = startY;
    return p;
}

// 模拟点的移动(这里简单让点在水平方向来回移动,速度固定)
void movePoint(Point *p, int maxX, int speed) {
    if (p->x < maxX && p->x >= 0) {
        p->x += speed;
    } else {
        speed = -speed;
        p->x += speed;
    }
}

// 假设定义一个结构体来存储历史帧数据,这里简单包含颜色信息,实际会更复杂
typedef struct {
    unsigned char **pixels;  // 二维数组指针,存储每个像素颜色,模拟历史帧像素数据
    int numFrames;  // 存储的历史帧数
    int width;  // 图像宽度
    int height;  // 图像高度
} HistoryBuffer;

// 初始化历史帧缓冲区
HistoryBuffer initHistoryBuffer(int numFrames, int width, int height) {
    HistoryBuffer buffer;
    buffer.numFrames = numFrames;
    buffer.width = width;
    buffer.height = height;
    buffer.pixels = (unsigned char **)malloc(numFrames * sizeof(unsigned char *));  // 分配存储历史帧指针的内存
    for (int i = 0; i < numFrames; i++) {
        buffer.pixels[i] = (unsigned char *)malloc(width * height * sizeof(unsigned char));  // 为每个历史帧分配像素数据内存
    }
    return buffer;
}

// 释放历史帧缓冲区内存
void freeHistoryBuffer(HistoryBuffer buffer) {
    for (int i = 0; i < buffer.numFrames; i++) {
        free(buffer.pixels[i]);
    }
    free(buffer.pixels);
}

// 计算水平方向运动矢量,参数为当前帧物体x坐标、上一帧物体x坐标以及帧率相关的时间间隔(这里简单用1表示)
int calculateMotionX(int currentX, int prevX, int timeInterval) {
    return currentX - prevX;  // 简单的位移计算,实际可能更复杂,比如考虑时间缩放等
}

// 进行像素颜色融合,currentColor为当前帧像素颜色,prevColor为历史帧对应像素颜色,weight为历史帧权重
unsigned char blendColors(unsigned char currentColor, unsigned char prevColor, float weight) {
    return (unsigned char)(currentColor * (1 - weight) + prevColor * weight);  // 简单加权平均计算
}

// 更新历史帧缓冲区,将新的当前帧数据存入,替换最早的帧数据
void updateHistoryBuffer(HistoryBuffer *buffer, unsigned char *currentFrame, int currentFrameIndex) {
    for (int y = 0; y < buffer->height; y++) {
        for (int x = 0; x < buffer->width; x++) {
            buffer->pixels[currentFrameIndex][(y * buffer->width) + x] = currentFrame[(y * buffer->width) + x];  // 复制当前帧像素数据到对应历史帧位置
        }
    }
    // 这里如果是循环缓冲区,需处理索引循环,比如简单的取模操作实现循环
    currentFrameIndex = (currentFrameIndex + 1) % buffer->numFrames;
}

// 模拟获取当前帧点所在像素的颜色(这里简单返回固定值,实际根据渲染情况获取真实颜色)
unsigned char getPixelColor(Point p) {
    return 255;  // 假设白色
}

// 应用TAA处理的主函数,模拟一个点在屏幕上移动并应用TAA抗锯齿
Image applyTAA(int width, int height, Point *point, int numFrames, int speed, float weight) {
    Image currentFrame = loadImage(width, height);
    HistoryBuffer historyBuffer = initHistoryBuffer(numFrames, width, height);
    int currentFrameIndex = 0;  // 当前帧在历史缓冲区的索引

    for (int frame = 0; frame < 100; frame++) {  // 模拟100帧的动态过程
        movePoint(point, width, speed);  // 移动点

        // 获取当前帧点所在像素颜色并设置到当前帧图像中(这里简单处理,实际要考虑渲染逻辑等)
        currentFrame.pixels[(point->y * width) + point->x] = getPixelColor(*point);

        // 融合处理,遍历每个像素(这里简单示意,实际可优化避免不必要遍历)
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                int prevFrameIndex = (currentFrameIndex - 1 + numFrames) % numFrames;  // 获取上一帧索引(循环缓冲区处理)
                int motionX = calculateMotionX(point->x, point->x - speed, 1);  // 计算水平运动矢量(简单示例)
                // 根据运动等情况决定是否融合(这里简单都融合,实际可更精细判断)
                if (motionX!= 0) {  // 如果有水平运动
                    currentFrame.pixels[(y * width) + x] = blendColors(currentFrame.pixels[(y * width) + x],
                                                                       historyBuffer.pixels[prevFrameIndex][(y * width) + x],
                                                                       weight);
                }
            }
        }

        // 更新历史帧缓冲区
        updateHistoryBuffer(&historyBuffer, currentFrame.pixels, currentFrameIndex);
        currentFrameIndex = (currentFrameIndex + 1) % numFrames;
    }

    freeHistoryBuffer(historyBuffer);
    return currentFrame;
}

int main() {
    int width = 200;
    int height = 200;
    Point point = initPoint(50, 100);  // 初始化点位置
    int numFrames = 3;  // 历史帧数
    int speed = 1;  // 点的移动速度
    float weight = 0.5;  // 历史帧权重

    Image finalFrame = applyTAA(width, height, &point, numFrames, speed, weight);

    // 这里可以添加代码将最终帧图像保存或显示等操作,此处省略
    freeImage(finalFrame);

    return 0;
}

请注意,上述代码只是一个非常简化且用于示意 TAA 基本原理和实现思路的示例,真正应用于实际的图形渲染场景时,还需要结合更完善的图形库、考虑更复杂的渲染管线、光照、纹理等诸多因素,并且要针对性能进行大量优化等工作。

<think>好的,用户想了解如何在C++中实现抗锯齿算法,并请求示例代码片段。首先,我需要回忆抗锯齿(AA)的基本概念和常用方法。抗锯齿主要用于减少图形边缘的锯齿状走样,常见的方法有超采样(SSAA)、多重采样(MSAA)、快速近似抗锯齿(FXAA)等。 用户提到的C++和可能的图像处理库,比如OpenCV,可能需要用这些库的函数来实现。根据用户提供的引用内容,他们之前接触过OpenCV的形态学操作和阈值处理,所以可能更倾向于使用OpenCV来实现抗锯齿。 首先,超采样是一种简单的方法,通过渲染更高分辨率的图像然后下采样。这可以用OpenCV的resize函数实现,结合插值方法如INTER_AREA或INTER_LINEAR。例如,将图像放大再缩小,或者使用高斯模糊平滑边缘后下采样。 另一个方法是形态学操作,比如膨胀或腐蚀,但抗锯齿通常不直接使用这些,可能用户混淆了。不过根据引用[2],形态学操作用于降噪,或许可以结合使用。但更直接的AA方法还是超采样或FXAA。 FXAA是一种后处理算法,检测边缘并进行平滑处理。OpenCV没有内置的FXAA实现,但可以手动实现边缘检测和高斯模糊。例如,用Canny检测边缘,然后对边缘区域进行模糊处理。 接下来需要考虑代码示例的结构。用户可能需要一个简单的示例,比如超采样的实现。代码应包括读取图像、处理、显示结果。同时,要引用用户提供的参考内容,比如形态学操作,但需明确说明其相关性。 需要检查OpenCV的函数是否正确,比如resize、GaussianBlur、Canny的使用。同时,代码语法要正确,比如使用cv::Mat,正确的参数顺序。 可能的问题是如何处理抗锯齿的不同方法,用户可能需要更多的解释,但根据问题,重点是提供示例代码。因此,选择两种方法:超采样和后处理模糊,并给出代码片段。 最后,生成相关问题,如性能分析、优化方法、应用场景等,帮助用户进一步学习。</think>在C++中实现抗锯齿(Anti-Aliasing, AA)算法可通过OpenCV结合图像处理技术实现。以下是两种常见方法的代码示例: --- ### 方法一:超采样抗锯齿(SSAA) 通过渲染高分辨率图像后降采样实现平滑: ```cpp #include <opencv2/opencv.hpp> int main() { // 读取原始图像(假设已加载为单通道或三通道) cv::Mat src = cv::imread("input.png"); // 超采样:将图像放大4倍 cv::Mat high_res; cv::resize(src, high_res, cv::Size(), 4.0, 4.0, cv::INTER_LINEAR); // 降采样:使用高斯模糊+区域插值降回原尺寸 cv::Mat blurred; cv::GaussianBlur(high_res, blurred, cv::Size(5,5), 1.5); cv::Mat dst; cv::resize(blurred, dst, src.size(), 0, 0, cv::INTER_AREA); cv::imshow("Result", dst); cv::waitKey(0); return 0; } ``` --- ### 方法二:边缘检测+后处理抗锯齿 结合Canny边缘检测与高斯模糊实现局部平滑: ```cpp #include <opencv2/opencv.hpp> void applyFXAA(cv::Mat &input, cv::Mat &output) { // 步骤1: 检测边缘 cv::Mat edges; cv::Canny(input, edges, 50, 150); // 步骤2: 对边缘区域进行高斯模糊 cv::Mat blurred; cv::GaussianBlur(input, blurred, cv::Size(3,3), 1.5); // 步骤3: 混合原始图像与模糊图像 blurred.copyTo(output, edges); // 仅在边缘区域应用模糊 } int main() { cv::Mat src = cv::imread("input.png"); cv::Mat dst; // 可选:先进行形态学降噪(参考引用[2]) cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3,3)); cv::morphologyEx(src, src, cv::MORPH_OPEN, kernel); applyFXAA(src, dst); cv::imshow("Anti-aliased", dst); cv::waitKey(0); return 0; } ``` --- ### 关键点说明 1. **超采样原理**:通过增加采样点数量减少高频信号失真,降采样时使用`INTER_AREA`插值保留更多细节[^2] 2. **边缘处理**:Canny检测到的边缘区域(锯齿明显区域)定向应用模糊,避免全图模糊影响清晰度 3. **形态学预处理**:如引用[2]所述,开运算可先去除噪声点,避免抗锯齿放大噪声 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值