《自动控制原理》第七章 线性离散系统的分析与校正

7 - 1离散系统的基本概念

  • 离散信号:离散信号是在时间上离散取值的信号,它只在某些特定的离散时刻有定义,通常用序列来表示,比如 x ( k T ) x(kT) x(kT) k = 0 , 1 , 2 , ⋯ k = 0,1,2,\cdots k=0,1,2, T T T为采样周期),与连续信号在时间上连续取值形成鲜明对比。
  • 离散系统的组成:一般由采样器、保持器、数字控制器、被控对象以及相应的输入输出环节等组成。采样器负责将连续信号转换为离散信号,数字控制器对离散信号进行处理和运算,保持器则把离散信号还原为在一定时间区间内相对连续的信号去作用于被控对象。
  • 离散系统的特点:具有可进行数字计算和存储、易于实现复杂控制算法、抗干扰能力相对较强等优点;但也存在信号处理过程中可能丢失部分信息、对采样频率等参数依赖性强等特点。
  • 与连续系统的区别和联系
    • 区别:连续系统中信号随时间连续变化,其数学模型常用微分方程描述,分析方法基于拉氏变换等连续域的工具;而离散系统信号是离散的,采用差分方程等作为数学模型,运用如 z z z变换等离散域的分析手段。
    • 联系:很多离散系统是由连续系统经过采样等处理得到的,并且在合适的条件下(比如采样频率足够高时),离散系统可以近似模拟连续系统的行为,二者在实际应用中常相互配合来实现有效的控制。

7 - 2信号的采样与保持

  • 采样过程:通过采样器按照固定的采样周期 T T T对连续信号进行等间隔采样,即将连续信号在每个采样时刻 k T kT kT的值抽取出来,得到离散信号序列。从数学角度看,采样过程相当于用一系列冲激函数对连续信号进行加权求和。
  • 采样定理(香农采样定理):它指出为了能够从采样后的离散信号无失真地恢复出原连续信号,采样频率 f s f_s fs f s = 1 T f_s = \frac{1}{T} fs=T1)必须大于等于被采样连续信号中最高有效频率 f m a x f_{max} fmax的两倍,即 f s ≥ 2 f m a x f_s \geq 2f_{max} fs2fmax。若不满足此条件,会出现频率混叠现象,导致无法准确还原原信号。
  • 保持器的作用和类型
    • 作用:保持器的作用是将采样得到的离散信号转换为在采样间隔内相对连续的信号,以便更好地驱动被控对象。它基于过去采样时刻的值来构造当前采样间隔内的信号波形。
    • 类型
      • 零阶保持器:是最常用的一种,它在每个采样间隔内保持采样值不变,即将当前采样时刻的值一直保持到下一个采样时刻,其传递函数为 G h ( s ) = 1 − e − s T s G_h(s)=\frac{1 - e^{-sT}}{s} Gh(s)=s1esT,具有结构简单、实现容易等优点。
      • 一阶保持器:会根据当前采样值和上一采样值进行线性插值来构造采样间隔内的信号,相比于零阶保持器能更好地逼近原连续信号,但结构更复杂,实际应用中使用相对较少。

7 - 3 z z z变换理论

  • 定义:对离散序列 x ( k ) x(k) x(k) k = 0 , 1 , 2 , ⋯ k = 0,1,2,\cdots k=0,1,2,)进行的一种数学变换,定义为 Z [ x ( k ) ] = X ( z ) = ∑ k = 0 ∞ x ( k ) z − k Z[x(k)] = X(z)=\sum_{k = 0}^{\infty} x(k)z^{-k} Z[x(k)]=X(z)=k=0x(k)zk z z z是复变量),通过这种变换将离散序列从时域转换到 z z z域,便于对离散系统进行分析和计算。
  • 性质:具有线性性质(满足齐次性和可加性)、移位性质(序列在时域的移位对应 z z z域的乘 z z z z − 1 z^{-1} z1等运算)、卷积定理(时域的卷积对应 z z z域的乘积)等多种性质,这些性质在求解离散系统响应、推导系统特性等方面有着重要应用。
  • 计算方法:常见的计算方法有直接根据定义式进行求和计算(适用于简单序列)、利用 z z z变换的性质以及已知的一些典型序列的 z z z变换结果(如单位脉冲序列、单位阶跃序列等)通过变换来求得目标序列的 z z z变换。
  • 与拉氏变换的关系 z z z变换可以看作是拉氏变换在离散系统中的一种推广形式,当对连续信号进行采样并对采样后的离散信号进行 z z z变换时, z z z和拉氏变换中的复变量 s s s存在对应关系,即 z = e s T z = e^{sT} z=esT T T T为采样周期),通过这种关系可以在一定程度上实现连续系统和离散系统分析方法的联系与转换。
  • z z z反变换的计算方法:主要有部分分式展开法(将 X ( z ) X(z) X(z)分解为多个简单分式之和,再利用已知的 z z z反变换结果求出原序列)、幂级数展开法(将 X ( z ) X(z) X(z)展开成幂级数形式,根据幂级数的系数确定原离散序列)以及留数法(利用复变函数的留数定理来计算 z z z反变换)等,通过这些方法可以从 z z z域的函数还原回时域的离散序列。

7 - 4离散系统的数学模型

  • 差分方程:是描述离散系统输入输出关系的一种时域数学模型,它基于离散时刻的输入输出值之间的递推关系来构建。例如,对于一个单输入单输出的离散系统,其 n n n阶差分方程一般形式为 y ( k ) + a 1 y ( k − 1 ) + ⋯ + a n y ( k − n ) = b 0 u ( k ) + b 1 u ( k − 1 ) + ⋯ + b m u ( k − m ) y(k)+a_1y(k - 1)+\cdots+a_ny(k - n)=b_0u(k)+b_1u(k - 1)+\cdots+b_mu(k - m) y(k)+a1y(k1)++any(kn)=b0u(k)+b1u(k1)++bmu(km) u ( k ) u(k) u(k)为输入序列, y ( k ) y(k) y(k)为输出序列, a i a_i ai b j b_j bj为系数),通过给定初始条件和输入序列,可以逐步递推计算出输出序列。
  • 脉冲传递函数:它类似于连续系统中的传递函数,是在 z z z域中描述离散系统输入输出关系的数学模型,定义为在零初始条件下,系统输出序列的 z z z变换与输入序列的 z z z变换之比,即 G ( z ) = Y ( z ) U ( z ) G(z)=\frac{Y(z)}{U(z)} G(z)=U(z)Y(z),利用脉冲传递函数可以方便地分析离散系统的特性,如稳定性、动态性能等,并且在离散系统的设计和校正中起着关键作用。
  • 建立离散系统的数学模型:通常可以通过对连续系统进行采样和离散化处理来建立,比如根据连续系统的微分方程,利用差分近似微分的方法(如前向差分、后向差分等)将其转化为差分方程;或者先求出连续系统的传递函数,再根据采样周期以及 z z z变换与拉氏变换的关系将其转换为脉冲传递函数;也可以直接从离散系统的物理结构和工作原理出发,分析输入输出在离散时刻的关系来构建相应的数学模型。

7 - 5离散系统的稳定性与稳态误差

  • 离散系统稳定的充要条件:离散系统稳定的充要条件是其脉冲传递函数 G ( z ) G(z) G(z)的所有极点(即特征方程的根)都位于 z z z平面上以原点为圆心的单位圆内。如果有极点位于单位圆外,则系统不稳定;若极点位于单位圆上,系统处于临界稳定状态,实际应用中通常也认为是不稳定的。
  • z z z传递函数经 w w w变换后用劳斯判据分析其稳定性:对于一些高阶离散系统,直接判断极点位置较困难,可通过双线性变换( w w w变换),将 z z z平面的单位圆映射到 w w w平面的左半平面,即令 z = 1 + w 1 − w z=\frac{1 + w}{1 - w} z=1w1+w,然后将离散系统的 z z z传递函数转换为 w w w传递函数,再利用劳斯判据(原本用于连续系统稳定性判断的方法)来分析离散系统在 z z z平面上的稳定性情况,这种方法使得连续系统中的一些成熟稳定性分析手段能应用于离散系统中。
  • 离散系统稳态误差的计算方法:离散系统稳态误差与系统的类型(根据开环脉冲传递函数中所含 z = 1 z = 1 z=1的极点个数来划分)、输入信号的形式(如阶跃输入、斜坡输入、抛物线输入等)以及采样周期等因素有关。一般通过先求出系统的稳态误差系数(如位置误差系数、速度误差系数、加速度误差系数等),再根据相应的公式结合输入信号类型来计算稳态误差,其计算思路和连续系统稳态误差计算有一定相似性,但要考虑离散系统自身的特点。

7 - 6离散系统的动态性能分析

  • 离散系统的时间响应:离散系统的时间响应由瞬态响应和稳态响应两部分组成。瞬态响应反映了系统在输入信号作用下从初始状态到接近稳态的过渡过程,它与系统的闭环极点位置密切相关;稳态响应则是系统在经过足够长时间后稳定下来的输出表现,取决于系统的特性以及输入信号的性质。通过计算离散系统在不同输入信号下的时间响应,可以直观地了解系统的动态性能。
  • 采样器和保持器对动态性能的影响
    • 采样器:采样周期的大小对系统动态性能影响显著,采样周期过大可能导致丢失较多连续信号的信息,使系统响应变差,甚至出现不稳定现象;而合适的采样周期能在保证一定控制精度的同时,使系统有较好的动态性能。
    • 保持器:不同类型的保持器也会影响系统动态性能,零阶保持器会使系统输出有一定的阶梯状变化,在一定程度上影响系统的平滑性和响应速度;一阶保持器虽然能更好地逼近原连续信号,但由于其结构相对复杂,可能引入额外的延迟等问题,对动态性能的改善效果需要综合考虑。
  • 闭环极点与动态性能的关系:离散系统闭环极点在 z z z平面上的位置决定了系统的动态性能。例如,极点越靠近单位圆内的原点,系统的响应衰减越快,稳定性越好;共轭复数极点对应的动态响应会出现振荡现象,其振荡频率和阻尼比等特性与极点在单位圆内的位置有关,通过分析和调整闭环极点位置可以优化离散系统的动态性能。

7 - 7离散系统的数字校正

  • 最少拍系统的设计:最少拍系统旨在使系统在有限个采样周期内,输出能够准确跟踪给定的输入信号,实现对输入的快速响应且无稳态误差。设计时,要根据输入信号的类型(如阶跃、斜坡、抛物线等)确定期望的闭环脉冲传递函数形式,然后通过满足一定的约束条件(如系统稳定、无稳态误差等)来计算出相应的数字校正装置的脉冲传递函数,使得系统能够以最少的拍数达到跟踪要求。
  • 无纹波最少拍系统的设计:在最少拍系统基础上,进一步考虑消除输出响应中的纹波现象。纹波是由于系统在达到稳态后,某些中间变量仍在变化导致的输出波动。无纹波最少拍系统设计时,除了满足常规的最少拍系统设计要求外,还需要保证系统的所有闭环脉冲传递函数的极点和零点都能对消,使得系统在稳态时所有内部状态都稳定,从而消除纹波,实现更平滑的输出响应,其设计过程相对更复杂,需要更细致地考虑系统各环节的相互作用。
  • 如何根据性能指标要求设计数字校正装置:首先要明确系统的各项性能指标,如对响应速度、稳态误差、有无纹波等的要求,然后结合输入信号类型,选择合适的校正设计方法(如最少拍或无纹波最少拍等),通过相应的理论计算,确定校正装置的脉冲传递函数以及相关参数,并且要对设计好的系统进行验证和优化,确保其满足所有性能指标要求。

7 - 8离散控制系统设计

  • 根据性能指标要求确定采样周期:确定采样周期需要综合考虑多方面因素,如被采样信号的最高频率(要满足采样定理以避免频率混叠)、系统对动态性能的要求(采样周期过大可能影响响应速度等)、控制器的计算能力(采样周期过小会增加计算负担)等。一般先根据采样定理初步确定一个上限,再结合系统实际性能需求,通过仿真或经验试凑等方法来选定合适的采样周期。
  • 设计数字校正装置:按照前面所述的离散系统数字校正方法,根据给定的性能指标(比如要实现最少拍跟踪、满足一定的稳态误差要求等),先分析系统的输入信号类型、当前的数学模型(如脉冲传递函数等),然后选择合适的设计策略(如最少拍系统设计或无纹波最少拍系统设计等),通过详细的数学推导和计算来确定数字校正装置的脉冲传递函数以及参数,最终构建出满足性能指标要求的离散控制系统,并且通常需要通过实际测试或仿真来检验设计的有效性并进行必要的调整优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值