自动控制原理学习笔记(七)—— 离散系统函数

前几节笔记如下:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客

自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客

自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客

自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客

一、使用差分方程进行系统建模

在前六节中,我们使用差分方程描述并优化了许多系统。以小车巡线为例,该系统可以由如下差分方程组表示:

于是,输入信号 d_{d}[\cdot ] 和输出信号 d[\cdot ] 就可以用一个差分方程表示(化简详见第五节笔记):

d[n]=2d[n-1]-d[n-2]+(\Delta T)^{2}VK_{p}\gamma (d_{d}[n-2]-d[n-2])

二、对差分方程的分析

对于任意输入信号 d_{d}[n] ,我们都可以通过差分方程找到该信号对应的响应信号。举个例子,假设响应信号满足当 n<0 时,

d[n]=0

于是我们可以使用差分方程,对输入信号 d_{d}[\cdot ] 和之前时段的响应信号( d[n-1] 和 d[n-2] )进行迭代,从而找到当前时刻下 d[n] 的值。即通过差分方程计算输入信号对应的响应信号。

差分方程还可以用来找到系统的固有频率。当 d_{d}[n]=0 时,我们想得到 \lambda 的值使得 d[n]=\lambda ^{n} 是该差分方程的解,于是

d[n]=2d[n-1]-d[n-2]+(\Delta T)^{2}VK_{p}\gamma (d_{d}[n-2]-d[n-2])

\lambda ^{n}-2\lambda ^{n-1}+(1+(\Delta T)^{2}VK_{p}\gamma)\lambda ^{n-2}=0

\lambda ^{2}-2\lambda+1+(\Delta T)^{2}VK_{p}\gamma=0

\lambda =1\pm j\Delta T\sqrt{VK_{p}\gamma }

即我们可以通过差分方程分析系统的性能指标(如稳定性、收敛性等等)。

三、时域分析法和频域分析法

通过前面的铺垫,我们通过差分方程引出两种分析系统的方法:

时域:计算出系统的时间响应:

d[n]=2d[n-1]-d[n-2]+(\Delta T)^{2}VK_{p}\gamma (d_{d}[n-2]-d[n-2])

频域:应用频率特性来研究系统:

\lambda ^{n}=2\lambda ^{n-1}-\lambda ^{n-2}-(\Delta T)^{2}VK_{p}\gamma\lambda ^{n-2}

从系统方框图可以看出,这两种分析方法在结构上的差别不大。为了便于分析和理解控制系统,我们想设计一种系统来同时表示它们。

四、多项式(函数)表示法

在时域分析法中,delay 环节能够清晰表示系统的时间响应。但在频域分析法中,delay 环节需要进行修改,\lambda ^{n} 延迟一个采样周期和与某个常数( \lambda ^{-1} )相乘是等价的。在频域分析法中,系统方程也称为特征方程,如下图所示。

\lambda ^{n}=2\lambda ^{n-1}-\lambda ^{n-2}-(\Delta T)^{2}VK_{p}\gamma\lambda ^{n-2}

定义 R 为既能表示时域中的 delay 环节,也能表示频域中与固有频率的倒数相乘环节的通用环节,则系统方框图如下图所示:

例 1 :令 Y=RX ,则下列选项中哪个是正确的?

        A. 对任意 n ,均有 y[n]=x[n]

        B. 对任意 n ,均有 y[n]=x[n-1]

        C. 对任意 n ,均有 y[n]=x[n+1]

        D. 对任意 n ,均有 y[n-1]=x[n]

答案:B

与其使用差分方程表示单独一个样本输入信号与对应响应之间的关系,我们将使用含 R 的多项式来表示所有输入信号与对应响应之间的关系。以下图系统为例:

样本输入信号与对应响应之间的关系:

y_{2}[n]=y_{1}[n]-y_{1}[n-1]                                

                        =(x[n]-x[n-1])-(x[n-1]-x[n-2])

=x[n]-2x[n-1]+x[n-2] 

所有输入信号与对应响应之间的关系:

Y_{2}=(1-R)Y_{1}=(1-R)\left \{ (1-R)\left \{ X \right \} \right \}=(1-R)(1-R)X

=(1-R)^{2}X                                                                                 

=(1-2R+R^{2})X                                                                      

其中,运算符 R 满足函数运算或多项式运算的性质。

例 2 :系统方框图满足等效运算的关系。下图中两个系统可以用同一个差分方程表示:

y[n]=x[n-1]-x[n-2]

        观察系统方框图,推测该系统满足何种多项式运算的性质?

        A. 交换律        B. 结合律        C. 分配律        D. 都不是

答案:C

五、多项式(函数)的代数运算

从前一节可知,运算符 R 满足交换律、结合律和分配律这三种基本性质。我们想从系统方框图的角度进一步了解这些性质。

以交换律为例:

R(1-R)X=(1-R)RX

这两个系统方框图是等价的,即它们都可以使用同一个差分方程来表示:

y[n]=x[n-1]-x[n-2]

以结合律为例:

(2+R)R(1+R)=(2+R)(R(1+R))=((2+R)R)(1+R)

对应下面三个系统方框图等价:

综上所述,对系统使用多项式表示法不仅可以保留系统原有的性质,还可以通过简单的多项式运算轻松化简系统的差分方程。接下来,我们希望通过多项式代替差分方程来分析控制系统。

六、开环系统和闭环系统的路径

起点和终点在同一节点,而且信号通过每一节点不多于一次的闭合通路称为回路。

开环系统没有回路,因此它的响应可以看成为多个信号的和,其中每个信号有自己的增益和延迟环节。闭环系统至少包含一个回路,由于信号会在回路中不停循环流动,即使输入信号已经结束,它的响应也会持续很长时间。

例 3 :下列控制系统中,闭环系统的数量为多少?

        A. 1                                B. 2                                C. 3                                D. 4

答案:C

七、对开环系统和闭环系统的分析

由比较点、增益和延迟组成的开环系统可以用一个多项式来表示。举个例子:

该系统有三条前向通路,其中两条通路只有一个延时环节,一条通路有两个延时环节。

开环系统甚至可以用一个函数 F(R) 来表示输入到输出之间的关系:

Y=F(R)X

其中

F(R)=R+R+R^{2}

很显然,Y 是 X 的函数。

例 4 :下列控制系统中,与 Y=(4R^{2}+4R+1)X 等价的系统数量为多少?

       

        A. 0                                B. 1                                C. 2                                D. 3

答案:D

一个最简单的闭环系统包含一条前向通路 F(R) 和一条后向通路 G(R) 。

Y=F(R)E=F(R)(X+G(R)Y)=F(R)X+F(R)G(R)Y

(1-F(R)G(R))Y=F(R)X

在闭环系统中,输出信号 Y 和输入信号 X 不再是函数关系。

八、对响应信号的分析

下图系统为开环系统,它没有回路。给定单位脉冲信号 \delta [n] 作为输入,该系统的脉冲响应如下图所示。

该脉冲响应的时长取决于系统延时最长的前向通路的延时时间,即函数 F(R)=1-p_{0}R 中 R 的最高次项的次数。

闭环系统脉冲响应的时长可以为无限长。下图系统为闭环系统,有一个回路。给定单位脉冲信号 \delta [n] 作为输入,该系统的脉冲响应如下图所示,信号每流过回路一次就会产生一个输出信号。

 

 

虽然当 n>0 时输入信号 x_{2}[n]=0 ,系统的响应永不停歇。故我们称 p_{0} 为系统的固有频率。

我们对比一下开环系统和闭环系统的表达式:

在闭环系统中,我们把上式代入到下式中,消去 X_{2} ,得:

Y_{2}=(1+p_{0}R+p_{0}^{2}R^{2}+p_{0}^{3}R^{3}+...)(1-p_{0}R)Y_{2}

化简,得:

(1+p_{0}R+p_{0}^{2}R^{2}+p_{0}^{3}R^{3}+...)(1-p_{0}R)=1

显然,1+p_{0}R+p_{0}^{2}R^{2}+p_{0}^{3}R^{3}+... 和 1-p_{0}R 两项互为倒数。

于是我们定义系统的传递函数为:

H(R)=\frac{1}{1-p_{0}R}=1+p_{0}R+p_{0}^{2}R^{2}+p_{0}^{3}R^{3}+p_{0}^{4}R^{4}+...

该等式也满足几何级数的性质(详见《高等数学》)。

在本章中,为了便于理解与计算,我们对离散控制系统进行了多项式表示,但我们对离散系统的性质依然不够了解。关于更多离散系统性质与系统传递函数的讲解,详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值