【算法】线性离散系统的分析与校正

前言

数字控制系统是将连续模拟信号通过采样开关离散化后,用数字控制器进行处理后,再用保持器对输出信号处理。

由于采样过程中,而采样信号具有以采样周期频率为周期的无限频谱,除主频普之外含无限多个附加的高频谱分量,只不过在幅值上变换了1/T倍,为了准确复现被采样的连续信号,必须用一个理想的低通滤波器滤掉全部附加的高频谱分量,保留主频谱。
同时采样频率必须大于采样信号的最高频率的二倍,才能避免出现频谱混叠现象。
对连续的时域信号进行分析,一般采用Laplace变换将时域信号转换到复域进行研究。而对于离散信号来说,一般采用z变换将信号转移到z域去研究。

离散系统

离散控制系统:在控制系统的一处或数处信号为脉冲序列或数码的系统,分为以下两类:

  • 采样控制系统:在系统中使用了采样开关,将连续信号变为脉冲序列去控制系统。
  • 数字控制系统:在系统中采用了数字计算机或数字控制器,其信号是以数码形式传递的。

离散系统的应用

目前,离散系统的最广泛应用形式是数字计算机,特别是以微型计算机为控制器的数字控制系统。

  • 数字控制系统:一种以数字计算机为控制器去控制具有连续工作状态的被控对象的闭环控制系统。
  • 工作原理:
    计算机控制系统原理框架图
    被控量c(t)、给定量r(t)一般在时间上是连续模拟信号,产生的偏差量e(t)用采样开关在时间上离散化,再由模数转换器(A/D)将其在离散点上量化,转换为数码信号,进入计算机进行数字运算,再经过D/A转换为连续信号作用于被控对象。简化模型如下:
    简化模型
    一般,A/D相当于一个采样开关。D/A可采用保持器的办法。最简单的保持器是零阶保持器,其将前一个采样点的值一直保持到后一个采样点出现之前。

信号的采样

  • 采样过程:将连续信号转换成脉冲或数码系列的过程。
    采样开关以周期T时间闭合,闭合的时间为τ(τ<<t),将连续函数e(t)转换为一个断续的脉冲函数e*(t)。
    信号采样
    采样过程数字描述:
    在这里插入图片描述
    理想采样序列e*(t)可以看做是由理想单位脉冲序列对连续信号调制而形成的。
    在这里插入图片描述
  • 采样定理:由离散信号完全恢复为响应连续信号的必要条件。
    如果连续信号e(t)频谱中所含的最高频率为wh,则e*(t)频谱不混叠的条件为:(香农采样定理)
    在这里插入图片描述

信号的保持

  • 零阶保持器

补充 傅里叶级数的复数形式(信号的采样原理)

1. 傅里叶级数的复数展开

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 欧拉公式

在这里插入图片描述
任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
qizhon

3. 理想单位脉冲序列的复数形式的傅里叶级数展开

在这里插入图片描述
在这里插入图片描述
将上式代入下式:
在这里插入图片描述
得:
在这里插入图片描述
在这里插入图片描述
式中,E(jw)为相应连续信号e(t)的傅里叶变换。|E(jw)|为e(t)的频谱。一般来说,连续信号的频带宽度是有限的,其频谱如下,其中包含的最高频率为ws
在这里插入图片描述
而采样信号e*具有以采样周期频率为周期的无限频谱,除主频普之外含无限多个附加的高频谱分量,只不过在幅值上变换了1/T倍,为了准确复现被采样的连续信号,必须用一个理想的低通滤波器滤掉全部附加的高频谱分量,保留主频谱。
在这里插入图片描述
如果连续信号e(t)频谱中所含的最高频率为wh,则e*(t)频谱不混叠的条件为:(香农采样定理)
在这里插入图片描述
在这里插入图片描述

Z变换分析离散系统

Laplaces变换是研究线性定常系统的基本数学工具(时域到复域),而z变换则是研究线性定常离散系统的基本数学工具。z变换是在离散信号Laplace变换基础上,经过变量代换引申出来的一种变换方法。

在这里插入图片描述
由于e-nTs为超越函数,计算不方便,故令z=eTs。(其中T为采样周期)

在这里插入图片描述
z变换定义的物理意义:即变量z-n的系数表示连续时间函数e(t)在采样时刻nT上的采样值。

z变换的方法

1. 级数求和法

在这里插入图片描述

在这里插入图片描述

2. 分布查表法

在这里插入图片描述

在这里插入图片描述
4. 留数法(反演积分法)
若已知连续信号e(t)的拉普拉斯变换E(s)和它的全部极点si,(i=1,2,…,l)可用下列留数计算公式求e(t)的采样序列e*(t)的z变换E*(z):
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结 三大方法

直接采样展开开放式,不闭合,实际很不方便
分布查表法将连续函数的分子和分母展开为已知形式
反演留数法复变函数的根本,原理性的推导,根据极点来推导Z域的变化。

线性定常离散系统的差分方程及其解法

为了研究离散系统的性能,需要建立离散系统的数学模型。本节主要介绍线性定常离散系统的差分方程及其解法,脉冲传递函数的定义,以及求开、闭环脉冲传递函数的方法。
差分方程的求解通常采用选代法或z变换法。
差分方程是离散系统的时域数学模型,相当于连续系统的微分方程。

离散频谱的比值校正法-频谱分析校正方法.pdf 离散频谱的比值校正法 在下帖子中讨论了“Matlab中FFT求正玹序列的振幅”https://www.ilovematlab.cn/thread-50611-1-1.html 我在帖子中指出了当“正弦信号的频率不FFT后的某条谱线相合”,可用校正法来求正弦信号的频率。在这里提供一个比值校正法的程序,它已编写成一个函数,该方法的理论可参看以下附件。 function Z=Specorr [nx,mx]=size; if mx==1, x=x';end [nx,mx]=size; if mx<N     x=[x zeros]; else     x=x; end w=hann; if method==2     xf=fft;     xf=xf/N*4;     WindowType=2; else     xf=fft;     xf=xf/N*2;     WindowType=1; end ddf=fs/N; n1=fix; n2=round;     A=abs;     [Amax,index]=max);     index=index n1-1;     phmax=angle);     %比值法     %加矩形窗     if         indsecL=A>A;         df=indsecL.*A./)-.*A./);         Z=*ddf;         Z=Amax/sinc;         Z=;              end         %比值法     %加Hanning窗     if         indsecL=A>A;         df=indsecL.*-Amax)./)-.*-Amax)./);         Z=*ddf;         Z=*Amax/sinc;         Z=;              end     Z=mod,2*pi);     Z=Z->pi)*pi; 调用格式是 Z=Specorr 其中输入变量 x     是被测信号   fs    采样频率 N    FFT的长度(相当于nfft) nx1,nx2   被测正弦信号频率的区间,nx2>nx1 method   窗函数的方法,1为矩形窗,2为海宁窗 输出变量Z,Z为被测信号的频率,Z为被测信号的幅值,Z为被测信号的初始相角 这里把https://www.ilovematlab.cn/thread-50611-1-1.html 帖子中1层的程序修改一下列于 Fs=1000; n=0:1/Fs:1; xn=10 15*sin randn); nfft=1024; Xn = fftshift); Xn=Xn/2; A=2*abs/Fs; subplot,plot subplot stem xlabel,ylabel P=Xn.*conj/nfft; xlim Z=Specorr 这样得到Z为 Z =    10.0003   15.0009    1.5693 信号频率为10.0003,幅值为15.0009,初始相角为1.5693。初始相角是以余弦信号为准,正弦信号正好差pi/2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值