ADAS 超级详解
一、ADAS 概述
ADAS(Advanced Driver - Assistance Systems)即高级驾驶辅助系统,旨在通过一系列先进技术,为驾驶员提供支持,增强驾驶安全性与舒适性,降低交通事故风险。它是汽车智能化发展的重要阶段,为自动驾驶技术的逐步实现奠定基础。
二、ADAS 关键技术
(一)传感器技术
- 摄像头
- 类型与功能
- 前视摄像头:一般安装在车内后视镜附近,用于检测前方道路、车辆、行人、交通标志和车道线等信息。例如,基于计算机视觉算法,它能识别前方车辆的距离、速度、方向以及交通标志的内容,为前方碰撞预警、车道偏离预警等功能提供数据支持。
- 后视摄像头:通常位于车尾,主要用于倒车时辅助驾驶员观察后方障碍物,提供清晰的后方视野,帮助驾驶员安全倒车。
- 环视摄像头:由多个摄像头组成,分布在车辆四周,通过图像拼接技术提供车辆周围 360 度的全景视图。这对于停车、狭窄道路行驶以及避免与周围障碍物碰撞非常有用。
- 内视摄像头:用于监测驾驶员状态,如检测驾驶员是否疲劳、注意力是否集中、是否有异常行为等。通过对驾驶员面部表情、眼睛状态等特征的分析,及时发出警报,防止因驾驶员状态不佳引发事故。
- 工作原理:摄像头通过光学镜头采集图像,将光信号转换为电信号,再经过模数转换变为数字图像信号,然后由图像处理芯片运用各种算法进行分析和识别,提取出有价值的信息。
- 类型与功能
- 毫米波雷达
- 原理:毫米波雷达利用毫米波频段(通常为 24GHz、77GHz 或 79GHz)的电磁波来检测目标物体。它通过发射毫米波信号,并接收目标物体反射回来的回波,根据回波与发射波之间的频率差(多普勒效应)计算目标物体的速度,根据回波的传播时间计算目标物体的距离,同时通过天线阵列技术确定目标物体的角度。
- 特点:具有较高的测距精度和测速精度,能够在各种恶劣天气条件(如雨、雾、雪)下正常工作,对运动目标的检测能力强。常用于自适应巡航控制(ACC)、前方碰撞预警(FCW)等功能,实时监测前方车辆的速度和距离,为车辆的速度调整提供依据。
- 激光雷达
- 原理:激光雷达通过发射激光束,并测量激光束从发射到遇到目标物体后反射回来的时间,从而计算出目标物体与传感器之间的距离。通过快速旋转或多线束扫描,激光雷达能够创建车辆周围环境的三维点云图,精确地描绘出周围物体的形状、位置和距离。
- 优势与局限:优势在于其高精度的距离测量和三维环境感知能力,能提供丰富的环境细节信息,对于复杂环境下的障碍物检测、地图绘制等任务表现出色。然而,其成本较高,体积较大,在一定程度上限制了其大规模应用。目前在自动驾驶测试车辆以及部分高端车型上开始逐渐应用。
- 超声波传感器
- 工作方式:超声波传感器通过发出高频超声波,并接收反射回来的超声波信号来检测目标物体。根据超声波的传播时间和速度,可以计算出传感器与目标物体之间的距离。它通常用于近距离检测,如停车时检测车辆与周围障碍物的距离。
- 应用场景:在倒车雷达系统中广泛应用,当车辆倒车时,超声波传感器实时监测车辆后方障碍物的距离,并通过声音或显示屏提示驾驶员,帮助驾驶员安全倒车。
(二)数据处理与算法
- 目标识别算法
- 基于机器学习的方法:利用大量的标注数据进行训练,如支持向量机(SVM)、随机森林等传统机器学习算法,以及深度学习中的卷积神经网络(CNN)。CNN 在图像识别方面表现出色,能够自动学习图像中的特征模式,对于车辆、行人、交通标志等目标的识别准确率较高。例如,在摄像头采集的图像数据上,CNN 可以通过多层卷积和池化操作,提取出目标物体的特征,进而判断图像中是否存在特定目标以及目标的类别。
- 多传感器融合的目标识别:结合多种传感器的数据进行目标识别,提高识别的准确性和可靠性。例如,将摄像头提供的物体视觉特征与毫米波雷达提供的距离和速度信息相结合,能够更准确地确定目标物体的属性和状态。通过融合算法,对不同传感器的数据进行校准、关联和综合分析,减少误识别和漏识别的情况。
- 路径规划算法
- 全局路径规划:根据车辆的起始点和目的地,结合地图信息,规划出一条从起点到终点的大致路线。常用的算法如 Dijkstra 算法和 A算法,它们在地图上搜索最优路径,考虑道路的连通性、距离、交通规则等因素。例如,在导航系统中,A算法可以根据地图数据和启发式函数,快速找到一条从当前位置到目标地点的最短或最优路径。
- 局部路径规划:在车辆行驶过程中,根据实时感知到的周围环境信息,如障碍物的位置、车辆的动态变化等,对全局路径进行实时调整和优化,确保车辆能够安全、顺畅地行驶。动态窗口法(DWA)是一种常用的局部路径规划算法,它考虑车辆的运动学和动力学约束,在车辆当前位置的可行运动范围内搜索最优的局部路径,以避开障碍物并朝着目标方向前进。
(三)通信技术
- 车内通信:车辆内部各传感器、控制器之间需要进行高效的数据传输。控制器局域网(CAN)总线是汽车中常用的一种串行通信协议,它具有高可靠性、实时性和抗干扰能力。不同的传感器和控制器通过 CAN 总线连接,将采集到的数据发送到相应的处理单元。例如,摄像头采集的图像数据经过初步处理后,通过 CAN 总线传输到 ADAS 控制器进行进一步分析和决策。
- 车与外界通信(V2X)
- V2V(Vehicle - to - Vehicle):车辆与车辆之间的通信,通过无线通信技术,车辆可以交换速度、位置、行驶方向等信息。例如,在交通拥堵或事故场景下,前方车辆可以将相关信息实时传递给后方车辆,使后方车辆提前做出减速、变道等决策,避免追尾事故的发生。
- V2I(Vehicle - to - Infrastructure):车辆与基础设施之间的通信,车辆可以与交通信号灯、路侧单元等基础设施进行信息交互。例如,车辆可以获取交通信号灯的状态信息,提前调整车速,实现“绿波通行”,提高交通效率。同时,基础设施也可以向车辆发送路况、天气等信息,为驾驶员提供更好的驾驶指导。
- V2P(Vehicle - to - Pedestrian):车辆与行人之间的通信,通过手机等设备,行人可以与车辆进行信息交互。例如,当行人靠近车辆时,车辆可以通过 V2P 技术检测到行人的位置和意图,提前采取制动或避让措施,保护行人安全。
三、ADAS 主要功能及应用
(一)自适应巡航控制(ACC)
- 功能描述:通过毫米波雷达等传感器实时监测前方车辆的行驶状态,自动调整本车速度,保持与前车的安全距离。驾驶员可以设定巡航速度和跟车距离,系统会根据前方车辆的加速、减速或停车等情况,自动控制车辆的油门和刹车。
- 应用场景:在高速公路或车流量相对稳定的道路上,ACC 功能能够显著减轻驾驶员的驾驶负担。例如,在长途驾驶过程中,驾驶员无需频繁操作油门和刹车,车辆能够自动保持安全的行驶速度和跟车距离,使驾驶更加轻松和舒适。同时,它也有助于提高道路的交通流畅性,减少因驾驶员频繁加减速导致的交通拥堵。
(二)前方碰撞预警(FCW)
- 功能描述:利用摄像头和雷达等传感器实时监测前方道路情况,当检测到可能与前方车辆、行人或障碍物发生碰撞时,系统会提前向驾驶员发出视觉、听觉或触觉等形式的预警信号。预警信号的形式可以根据车辆的设置和驾驶员的偏好进行调整,例如在仪表盘上显示警示图标、发出蜂鸣声或通过座椅震动提醒驾驶员。
- 应用场景:在各种道路场景下,特别是在城市道路中,车辆行驶速度相对较低但交通状况复杂,FCW 功能能够及时提醒驾驶员潜在的碰撞危险。例如,当驾驶员因注意力不集中或误判前方车辆距离时,FCW 系统能够在碰撞发生前的几秒内发出预警,让驾驶员有足够的时间做出反应,采取制动或避让措施,避免或减轻碰撞的严重程度。
(三)自动紧急制动(AEB)
- 功能描述:在前方碰撞预警的基础上,当系统判断碰撞风险极高且驾驶员没有及时做出反应时,会自动触发制动系统,对车辆进行紧急制动。AEB 系统通过对传感器数据的实时分析,计算碰撞的可能性和时间,并在必要时迅速启动制动装置,以最大程度地减少碰撞损失。制动的力度和时机根据具体情况进行动态调整,以确保既能有效避免碰撞,又不会对车内人员造成过大的冲击。
- 应用场景:在城市道路的交叉路口、停车场等场景中,车辆与行人、其他车辆的交互频繁,AEB 功能尤为重要。例如,当车辆前方突然出现行人或车辆时,AEB 系统能够在驾驶员来不及反应的情况下,自动刹车,避免碰撞事故的发生。研究表明,AEB 功能可以显著降低交通事故的发生率和严重程度,特别是在低速行驶场景下效果更为明显。
(四)车道偏离预警(LDW)
- 功能描述:通过摄像头监测车辆是否偏离车道线,当车辆在未打转向灯的情况下无意识地偏离车道时,系统会发出预警信号。预警信号通常包括视觉提示(如仪表盘上的警示灯亮起)、听觉提示(如发出警报声)或触觉提示(如方向盘震动)。LDW 系统能够实时分析摄像头采集的图像数据,识别车道线的位置和车辆在车道内的位置,判断车辆是否偏离车道。
- 应用场景:在高速公路和快速路等道路上,车辆行驶速度较快,驾驶员长时间驾驶容易疲劳,导致注意力不集中,此时 LDW 功能可以及时提醒驾驶员纠正方向,防止车辆因偏离车道而引发事故。例如,当驾驶员在长途驾驶过程中出现疲劳打瞌睡,车辆开始偏离车道时,LDW 系统会立即发出预警,提醒驾驶员保持在车道内行驶,提高驾驶的安全性。
(五)车道保持辅助(LKA)
- 功能描述:不仅能检测车道偏离,还能通过自动微调转向系统,帮助驾驶员将车辆保持在车道内行驶。LKA 系统通过摄像头实时监测车道线的位置,并根据车辆与车道线的相对位置关系,自动计算需要调整的转向角度,然后通过电子助力转向系统对车辆进行微调,使车辆始终保持在车道中心位置附近行驶。
- 应用场景:在高速公路和一些路况较好的道路上,LKA 功能与车道偏离预警功能配合使用,为驾驶员提供更全面的车道保持支持。例如,当驾驶员因疲劳或其他原因未能及时对车道偏离预警做出反应时,LKA 系统会主动介入,自动调整方向盘,确保车辆稳定行驶在车道内,减少驾驶员的驾驶压力,提高驾驶的舒适性和安全性。
(六)盲点监测(BSD)
- 功能描述:利用毫米波雷达等传感器监测车辆两侧后视镜盲区的车辆或物体。当有车辆进入盲区时,系统会通过后视镜上的指示灯或车内的警示音等方式提醒驾驶员。BSD 系统持续监测车辆后方和侧面的区域,当检测到盲区有目标物体时,会及时发出警示信号,让驾驶员在变道或转向时能够更加谨慎,避免因未注意到盲区内的车辆而发生碰撞事故。
- 应用场景:在车辆行驶过程中,特别是在多车道道路上进行变道操作时,BSD 功能非常实用。例如,当驾驶员准备变道时,通过观察后视镜可能无法及时发现盲区内的车辆,而 BSD 系统能够及时提醒驾驶员,确保变道操作的安全性。此外,在雨天、夜间等视线不佳的情况下,BSD 功能的作用更加凸显,它可以弥补驾驶员视觉上的不足,提供额外的安全保障。
(七)后方交叉交通预警(RCTA)
- 功能描述:一般在车辆倒车时起作用,通过车尾的传感器监测车辆后方两侧的交叉交通情况。当检测到有车辆或行人从后方两侧接近时,系统会发出预警信号,提醒驾驶员注意后方安全。RCTA 系统通过毫米波雷达或摄像头等传感器,实时监测车辆后方两侧一定范围内的交通状况,当检测到有潜在危险的交叉交通目标时,迅速发出警报,避免在倒车出库或倒车时与后方来车发生碰撞。
- 应用场景:在停车场、小区出入口等场景中,车辆倒车时视野受限,RCTA 功能能够有效帮助驾驶员发现后方两侧的来车或行人。例如,在停车场倒车出库时,由于车辆后方存在视觉盲区,驾驶员可能无法及时发现从侧面驶来的车辆,而 RCTA 系统可以及时发出预警,让驾驶员有足够的时间采取制动或避让措施,确保倒车过程的安全。
四、ADAS 的发展现状与未来趋势
(一)发展现状
- 市场普及程度:随着汽车技术的不断发展和消费者对安全性能的关注度提高,ADAS 系统在汽车市场上的普及率逐渐上升。目前,中高端车型大多配备了多种 ADAS 功能,一些主流汽车品牌也开始将部分 ADAS 功能下放到中低端车型上,以提高产品竞争力。然而,不同地区和品牌之间的普及程度仍存在差异,一些发展中国家或小众品牌的车型中,ADAS 功能的配置率相对较低。
- 技术成熟度:部分 ADAS 功能,如自适应巡航控制、车道偏离预警等,技术已经相对成熟,在市场上得到了广泛应用和验证。然而,一些涉及复杂环境感知和决策的功能,如自动紧急制动在复杂场景下的可靠性、自动驾驶功能在极端天气和特殊路况下的适应性等,仍有待进一步提高。此外,多传感器融合技术虽然取得了一定进展,但在数据处理的准确性和实时性方面,还需要不断优化。
(二)未来趋势
- 更高的自动化等级:ADAS 将朝着更高的自动化等级发展,从目前的部分自动驾驶功能逐渐向完全自动驾驶过渡。这需要在传感器技术、数据处理算法、通信技术等方面取得更大的突破,以实现车辆在各种复杂环境下的自主决策和安全行驶。
- 深度传感器融合:未来将更加注重多种传感器的深度融合,通过更先进的融合算法,充分发挥不同传感器的优势,提高环境感知的准确性和可靠性。例如,将激光雷达的高精度三维信息、摄像头的丰富视觉信息和毫米波雷达的全天候检测能力深度融合,为车辆提供更全面、精确的环境信息。
- 智能化与个性化:随着人工智能技术的不断发展,ADAS 将更加智能化,能够更好地理解驾驶员的意图和行为模式,实现个性化的驾驶辅助功能。例如,根据驾驶员的驾驶习惯自动调整自适应巡航的跟车距离、自动调整座椅和后视镜的位置等,提供更加人性化的驾驶体验。
- 与车联网的融合:ADAS 将与车联网技术深度融合,实现车辆与车辆、车辆与基础设施、车辆与行人之间更广泛的信息交互。通过车联网,车辆可以获取更多的实时交通信息、路况信息和天气信息等,从而做出更合理的决策,提高交通效率和安全性。同时,车联网还可以实现远程监控和诊断 ADAS 系统,及时发现和解决潜在问题。