onnx转为engine

onnx 转为engine

在这里插入图片描述

你可以使用TensorRT来将YOLOv7的ONNX模型转换为TensorRT引擎。下面是一些步骤供你参考: 1. 首先,你需要安装TensorRT并设置好环境。你可以从NVIDIA的官方网站上下载TensorRT并按照文档进行安装。 2. 然后,你需要使用ONNX Parser来解析YOLOv7的ONNX模型并创建TensorRT网络。你可以使用TensorRT Python API中的`trt.Builder`和`trt.OnnxParser`类来完成这个步骤。 ```python import tensorrt as trt TRT_LOGGER = trt.Logger(trt.Logger.WARNING) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() parser = trt.OnnxParser(network, TRT_LOGGER) # 解析ONNX模型 with open('yolov7.onnx', 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) ``` 3. 接下来,你需要设置TensorRT网络的输入和输出。YOLOv7模型有三个输入(图像数据、图像尺寸、批处理大小)和两个输出(检测框坐标和类别概率)。你需要为这些输入和输出创建TensorRT的`trt.ITensor`对象。 ```python input_tensor = network.get_input(0) input_shape = input_tensor.shape input_tensor.name = 'input' output_tensor1 = network.get_output(0) output_shape1 = output_tensor1.shape output_tensor1.name = 'output1' output_tensor2 = network.get_output(1) output_shape2 = output_tensor2.shape output_tensor2.name = 'output2' ``` 4. 然后,你可以设置TensorRT的优化选项,例如设置最大批处理大小、最大工作空间大小等。这些选项可以通过`trt.Builder`类的方法进行设置。 ```python builder.max_batch_size = 1 builder.max_workspace_size = 1 << 30 # 1GB ``` 5. 最后,你需要使用`trt.Builder`类的`build_cuda_engine`方法来编译TensorRT引擎,并将其保存到磁盘上以便后续使用。 ```python engine = builder.build_cuda_engine(network) trt.save_engine(engine, 'yolov7.engine') ``` 完成以上步骤后,你将得到一个TensorRT引擎文件(yolov7.engine),你可以将其用于加速YOLOv7模型的推理过程。请注意,上述代码仅为示例,你可能需要根据你的具体模型和需求进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值