LLM训练:MFU计算方法

本文探讨MFU(Model FLOPs Utilization),用于评估GPU在大模型训练中的算力利用率。MFU计算涉及到模型前向反向计算的FLOPs与GPU峰值算力的比值。文章详细介绍了MFU的计算方法,包括注意力机制和MLP的FLOPs计算,并在理想情况下进行了简化估算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、引言

        在进行大模型训练时,我们需要关注GPU资源的利用率,特别是GPU算力利用率通常可以作为大模型训练框架的性能指标,也直接影响训练大模型的成本。我们看到大家普遍使用 MFU(Model FLOPS Utilization)这个指标来评估GPU算力利用率[1]。本文主要介绍MFU的计算方法。

二、MFU的计算方法

1、mfu与hfu的概念

模型算力利用率(Model FLOPs Utilization, MFU)和硬件算力利用率(Hardware FLOPs Utilization, HFU)是评估某一模型实现对芯片计算性能利用情况的常用指标。

  • 模型算力利用率是指_模型一次前反向计算消耗的矩阵算力与机器算力的比值_
  • 硬件算力利用率是指_考虑重计算后,模型一次前反向计算消耗的矩阵算力与机器算力的比值_

数学公式:MFU = model FLOPs per iteration/(GPU单卡算力*卡数*一次迭代时间)

通用transformer模型一次前反向算力计算公式如下,model FLOPs per iteration: 

所以通用的transformers模型 mfu 用公式表达如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值