【论文复现】HiNet: Deep Image Hiding by Invertible Network-基于可逆神经网络的图像隐藏技术 (ICCV 2021)

该文提供了在配备CUDA11.8和nVidia3090显卡的Linux服务器上,基于Ubuntu18.04LTS环境运行PyTorch项目的方法。项目依赖Python3.7和PyTorch1.0.1以上版本,涉及的数据集包括DIV2K、COCO和ImageNet。用户需在config.py中配置数据集路径及模型保存路径。通过运行train.py进行模型训练,test.py进行测试。作者提及已成功运行该项目,现补充相关文档。
摘要由CSDN通过智能技术生成

参考链接:
论文阅读:https://blog.csdn.net/u014546828/article/details/120838459
github链接:https://github.com/TomTomTommi/HiNet

Linux服务器环境:CUDA 11.8 ;nVidia 3090 显卡;Ubuntu 18.04 LTS
在这里插入图片描述

  • 依赖环境:
    Python 3.7
    PyTorch = 1.0.1 (其他版本可能运行会有bug)
    导入项目中的environment.yml
  • 数据集( Dataset)
    DIV2K, COCO, ImageNet
    数据集位置在 config.py中修改:
    line30:  TRAIN_PATH = '' 
    line31:  VAL_PATH = '' 
    
    line45:  MODEL_PATH = '' # 模型保存路径
    line49:  IMAGE_PATH = '' # 测试时产生的stego和rev_stego等图像保存路径
    例如,模型名称为model.pt,路径为/home/usrname/Hinet/model/,则设置MODEL_PATH = '/home/usrname/Hinet/model/',suffix = 'model.pt'

准备好上面的就可以运行代码啦
运行 train.py 进行训练。
运行 test.py 进行测试。

其实去年就运行成功了,但是一直拖着没写文档,现在补上

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岁月漫长_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值