xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems【论文记录】

1 摘要

  • we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level.
    我们提出了一种新的压缩交互网络(CIN),旨在以显式方式在矢量级上生成特征交互。

  • On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly.
    一方面,xDeepFM 能够显式地学习某些边界度特征交互。 另一方面,它可以隐式学习任意的低阶和高阶特征交互。

2 介绍

  • Factorization Machines (FM) embed each feature i i i to a latent factor vector v i = [ v i 1 , v i 2 , ⋯   , v i D ] v_i = [v_{i1}, v_{i2}, \cdots,v_{iD}] vi=[vi1,vi2,,viD],we use the term bit to denote a element (such as v i 1 v_{i1} vi1) in latent vectors
    因子分解机把每个特征 i i i 都嵌入到隐因子向量 v i = [ v i 1 , v i 2 , ⋯   , v i D ] v_i = [v_{i1}, v_{i2}, \cdots,v_{iD}] vi=[vi1,vi2,,viD],我们用位表示隐向量中的元素(比如 v i 1 v_{i1} vi1

  • there is no theoretical conclusion on what the maximum degree of feature interactions is. DNNs model feature interactions at the bit-wise level, which is different from the traditional FM framework which models feature interactions at the vector-wise level
    没有关于最大特征相互程度的理论结论。 DNN 在按位级别上建模功能交互,这与传统的FM框架不同,后者在矢量级上建模功能交互

  • We argue that the CrossNet learns a special type of high-order feature interactions, where each hidden layer in the CrossNet is a scalar multiple of x 0 x_0 x0. Note that the scalar multiple does not mean x k \mathbf{x}_k xk is linear with x 0 x_0 x0. The coefficient α i + 1 \alpha^{i+1} αi+1 is sensitive with x 0 \mathbf{x}_0 x0
    我们认为 CrossNet 学习一种特殊类型的高阶特征交互,其中 CrossNet 中的每个隐藏层都是 x 0 x_0 x0 的标量倍数。 注意,标量倍数并不意味着 x k \mathbf{x}_k xk x 0 x_0 x0 是线性的。系数 α i + 1 \alpha^{i + 1} αi+1 x 0 \mathbf{x}_0 x0 敏感

3 OUR PROPOSED MODEL

3.1 CIN

Sum pooling

  • We first apply sum pooling on each feature map of the hidden layer:
    我们首先将求和池应用于隐藏层的每个特征映射:
    p i k = ∑ j = 1 D X i , j k (1) p^k_i=\sum^D_{j=1}\mathbf{X}^k_{i,j} \tag{1} pik=j=1DXi,jk(1) we have a pooling vector p k = [ p 1 k , p 2 k , ⋯   , p H k k ] p^k = [p^k_1, p^k_2, \cdots, p^k_{H_k}] pk=[p1k,p2k,,pHkk] with length H k H_k Hk for the k-th hidden layer
    H k H_k Hk denotes the number of (embedding) feature vectors in the k-th layer
    H k H_k Hk 表示第 k 层中的(嵌入)特征向量的数量

  • All pooling vectors from hidden layers are concatenated before connected to output units: p + = [ p 1 , p 2 , ⋯   , p T ] p^+ = [p^1, p^2, \cdots, p^T] p+=[p1,p2,,pT]

3.2 Combination with Implicit Networks$

xDeepFM
y ^ = σ ( w linear T a + w dnn T x dnn k + w cin T p + + b ) (2) \hat{y}=\sigma\left(\mathbf{w}_{\text {linear}}^{T} \mathbf{a}+\mathbf{w}_{\text {dnn}}^{T} \mathbf{x}_{\text {dnn}}^{k}+\mathbf{w}_{\text {cin}}^{T} \mathbf{p}^{+}+b\right) \tag{2} y^=σ(wlinearTa+wdnnTxdnnk+wcinTp++b)(2) CIN 的每一阶特征都输出

4 实验

CIN Performance
Model Performance

总结

  • we propose a novel network named Compressed Interaction Network (CIN), which aims to learn high-order feature interactions explicitly. CIN has two special virtues: (1) it can learn certain bounded-degree feature interactions effectively; (2) it learns feature interactions at a vector-wise level.
    我们提出了一种新的网络,即压缩交互网络(CIN),其目的是明确地学习高阶特征交互。CIN有两个独特的优点:(1)它可以有效地学习某种有界度的特征交互;(2)在向量水平上学习特征交互。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Practical Recommender Systems By 作者: Kim Falk ISBN-10 书号: 1617292702 ISBN-13 书号: 9781617292705 Edition 版本: 1 出版日期: 2019-02-02 pages 页数: (432 ) $49.99 Online recommender systems help users find movies, jobs, restaurants—even romance! There’s an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you’ll see how to collect user data and produce personalized recommendations. You’ll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you’ll encounter as your site grows. Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. What’s inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值