xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems【论文记录】

1 摘要

  • we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level.
    我们提出了一种新的压缩交互网络(CIN),旨在以显式方式在矢量级上生成特征交互。

  • On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly.
    一方面,xDeepFM 能够显式地学习某些边界度特征交互。 另一方面,它可以隐式学习任意的低阶和高阶特征交互。

2 介绍

  • Factorization Machines (FM) embed each feature i i i to a latent factor vector v i = [ v i 1 , v i 2 , ⋯   , v i D ] v_i = [v_{i1}, v_{i2}, \cdots,v_{iD}] vi=[vi1,vi2,,viD],we use the term bit to denote a element (such as v i 1 v_{i1} vi1) in latent vectors
    因子分解机把每个特征 i i i 都嵌入到隐因子向量 v i = [ v i 1 , v i 2 , ⋯   , v i D ] v_i = [v_{i1}, v_{i2}, \cdots,v_{iD}] vi=[vi1,vi2,,viD],我们用位表示隐向量中的元素(比如 v i 1 v_{i1} vi1

  • there is no theoretical conclusion on what the maximum degree of feature interactions is. DNNs model feature interactions at the bit-wise level, which is different from the traditional FM framework which models feature interactions at the vector-wise level
    没有关于最大特征相互程度的理论结论。 DNN 在按位级别上建模功能交互,这与传统的FM框架不同,后者在矢量级上建模功能交互

  • We argue that the CrossNet learns a special type of high-order feature interactions, where each hidden layer in the CrossNet is a scalar multiple of x 0 x_0 x0. Note that the scalar multiple does not mean x k \mathbf{x}_k xk is linear with x 0 x_0 x0. The coefficient α i + 1 \alpha^{i+1} αi+1 is sensitive with x 0 \mathbf{x}_0 x0
    我们认为 CrossNet 学习一种特殊类型的高阶特征交互,其中 CrossNet 中的每个隐藏层都是 x 0 x_0 x0 的标量倍数。 注意,标量倍数并不意味着 x k \mathbf{x}_k xk x 0 x_0 x0 是线性的。系数 α i + 1 \alpha^{i + 1} αi+1 x 0 \mathbf{x}_0 x0 敏感

3 OUR PROPOSED MODEL

3.1 CIN

Sum pooling

  • We first apply sum pooling on each feature map of the hidden layer:
    我们首先将求和池应用于隐藏层的每个特征映射:
    p i k = ∑ j = 1 D X i , j k (1) p^k_i=\sum^D_{j=1}\mathbf{X}^k_{i,j} \tag{1} pik=j=1DXi,jk(1) we have a pooling vector p k = [ p 1 k , p 2 k , ⋯   , p H k k ] p^k = [p^k_1, p^k_2, \cdots, p^k_{H_k}] pk=[p1k,p2k,,pHkk] with length H k H_k Hk for the k-th hidden layer
    H k H_k Hk denotes the number of (embedding) feature vectors in the k-th layer
    H k H_k Hk 表示第 k 层中的(嵌入)特征向量的数量

  • All pooling vectors from hidden layers are concatenated before connected to output units: p + = [ p 1 , p 2 , ⋯   , p T ] p^+ = [p^1, p^2, \cdots, p^T] p+=[p1,p2,,pT]

3.2 Combination with Implicit Networks$

xDeepFM
y ^ = σ ( w linear T a + w dnn T x dnn k + w cin T p + + b ) (2) \hat{y}=\sigma\left(\mathbf{w}_{\text {linear}}^{T} \mathbf{a}+\mathbf{w}_{\text {dnn}}^{T} \mathbf{x}_{\text {dnn}}^{k}+\mathbf{w}_{\text {cin}}^{T} \mathbf{p}^{+}+b\right) \tag{2} y^=σ(wlinearTa+wdnnTxdnnk+wcinTp++b)(2) CIN 的每一阶特征都输出

4 实验

CIN Performance
Model Performance

总结

  • we propose a novel network named Compressed Interaction Network (CIN), which aims to learn high-order feature interactions explicitly. CIN has two special virtues: (1) it can learn certain bounded-degree feature interactions effectively; (2) it learns feature interactions at a vector-wise level.
    我们提出了一种新的网络,即压缩交互网络(CIN),其目的是明确地学习高阶特征交互。CIN有两个独特的优点:(1)它可以有效地学习某种有界度的特征交互;(2)在向量水平上学习特征交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值