【GCN-CTR】剪枝特征:Detecting Beneficial Feature Interactions for Recommender Systems (AAAI‘21)

该论文提出了一种名为L0-SIGN的方法,旨在识别并剪枝推荐系统中的有益特征交互。通过将特征交互视为图上的链接预测任务,L0-SIGN结合了L0正则化和统计交互图神经网络,有效地减少了无用特征组合,提高了模型效率和准确率。文章讨论了二阶特征组合,并指出其在实际应用中的优势和局限性。
摘要由CSDN通过智能技术生成

Detecting Beneficial Feature Interactions for Recommender Systems (AAAI’21)

这篇的motivation和method都更自然一些,就是有的地方写的不太清楚。

Motivation

DeepFM等一系列模型注重于挖掘高阶特征,但是这些模型只管挖不管筛。对于一个样本有 J J J 个特征,二阶组合特征就有 J ( J − 1 ) / 2 J(J-1)/2 J(J1)/2 个,大量的特征组合自然也有大量无用特征,会降低模型质量和速度,所以怎么合理对特征组合进行剪枝,是本文所研究的问题。这篇文章只考虑二阶特征组合。

同样地,这篇文章以特征作为节点建立Graph,把识别重要特征交互任务看作图上的 Link Prediction 任务,然后把 CTR 任务看作图分类任务。

所以从大的角度上看,这篇可以看作在Fi-GNN的基础上剪枝邻接矩阵。

Method: L 0 L_0 L0-SIGN

image-20220218130048595

每个节点有两套embedding v i e v_{i}^{e} vie u i {u}_{i} ui,分别用于L0模块和SIGN模块。SIGN模块的作用类似于DCN、DeepFM中的特征交互模块,L0模块的作用则是为SIGN模块剪枝。

L 0 L_0 L0 Edge Prediction Model

最简单的Edge Prediction方案就是MF,这里用一个MLP的模型 f e p f_{e p} fep 来识别节点 i i i 和节点 $ j$ 之间是否存在边:
f e p ( v i e , v j e ) = W 2 e Re ⁡ L U ( W 1 e ( v i e ⊙ v j e ) + b 1 e ) + b 2 e : R 2 × b → Z 2 f_{e p}\left(v_{i}^{e}, v_{j}^{e}\right) = W_{2}^{e} \operatorname{Re} L U\left(W_{1}^{e}\left(v_{i}^{e} \odot v_{j}^{e}\right)+b_{1}^{e}\right)+b_{2}^{e}: \mathbb{R}^{2 \times b} \rightarrow \mathbb{Z}_{2} fep(vie,vje)=W2eReLU(W1e(viev

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值