【论文翻译】DANN的改进ADDA Multimodal Vigilance Estimation with Adversarial Domain Adaptation Networks

本文探讨了如何使用对抗性领域适应网络(如DANN和ADDA)改善跨个体的警觉度估计,通过减少对新个体标记数据的依赖。在SEED-VIG数据集上,与传统方法和基线相比,这两个方法的皮尔逊相关系数提高了10%以上,展示了对抗网络在脑电图和眼电图信号处理中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

会议论文:2018 International Joint Conference on Neural Networks (IJCNN)
论文作者:上海交通大学bllu
论文链接:http://bcmi.sjtu.edu.cn/~zhengweilong/pdf/ijcnn2018_li.pdf
作者讲解:https://www.bilibili.com/video/BV1XK411p7Pd?p=4 (直接空降到63:30)

1.研究背景和目的

驾驶过程中的警惕性估计对于预防交通事故至关重要。已经提出了许多用于警戒性估计的方法。但是,大多数方法都需要收集特定于受试者的标记数据以进行校准,这对于实际应用而言是高成本的。

为了解决此问题,可以使用域自适应方法来对齐源主题特征(源域)和新主题特征(目标域)的分布。通过重用其他主题的现有数据,不需要新的主题标签数据即可训练模型。

在本文中,我们的目标是将对抗性领域适应网络应用于跨学科警戒估计。我们采用两种最近提出的对抗域自适应网络,并将它们的性能与几种传统域自适应方法和没有域自适应的基线进行比较。

使用公开可用的数据集SEED-VIG评估方法。该数据集包括脑电图(EEG)和眼电图(EOG)信号,以及在模拟驾驶过程中的相应警戒级别注释。与基线相比,两个对抗域适应网络的皮尔逊相关系数均提高了10

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值