【论文翻译】DANN的改进ADDA: Multimodal Vigilance Estimation with Adversarial Domain Adaptation Networks
会议论文:2018 International Joint Conference on Neural Networks (IJCNN)
论文作者:上海交通大学bllu
论文链接:http://bcmi.sjtu.edu.cn/~zhengweilong/pdf/ijcnn2018_li.pdf
作者讲解:https://www.bilibili.com/video/BV1XK411p7Pd?p=4 (直接空降到63:30)
1.研究背景和目的
驾驶过程中的警惕性估计对于预防交通事故至关重要。已经提出了许多用于警戒性估计的方法。但是,大多数方法都需要收集特定于受试者的标记数据以进行校准,这对于实际应用而言是高成本的。
为了解决此问题,可以使用域自适应方法来对齐源主题特征(源域)和新主题特征(目标域)的分布。通过重用其他主题的现有数据,不需要新的主题标签数据即可训练模型。
在本文中,我们的目标是将对抗性领域适应网络应用于跨学科警戒估计。我们采用两种最近提出的对抗域自适应网络,并将它们的性能与几种传统域自适应方法和没有域自适应的基线进行比较。
使用公开可用的数据集SEED-VIG评估方法。该数据集包括脑电图(EEG)和眼电图(EOG)信号,以及在模拟驾驶过程中的相应警戒级别注释。与基线相比,两个对抗域适应网络的皮尔逊相关系数均提高了10