初学者之路——————水声通信总结

博客介绍了水声信号目标识别过程,先使用声纳捕捉声信号,再去噪,最后处理得到目标声音分量区分。指出水声信号去噪比地面通信复杂,且对目标识别影响大。还提到深度学习自监督算法可降低数据集要求,提高目标识别正确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

水声信号进行目标识别,暂时的过程为使用声纳进行声信号捕捉,然后进行声信号去噪,最后通过一系列处理得到目标的声音分量进行区分。

水声信号的去噪不同于地面通信,面临的问题更为复杂,而且去噪过程对于目标识别影响巨大。

水声信号与深度学习联系日益加深,尤其是深度学习中的自监督算法,对于数据集要求降低,可以提高声信号的目标识别正确率。

文章如果存在问题,欢迎大家指出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值