✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
水声通信信道是水下通信系统中至关重要的组成部分,其特性对通信性能有着显著的影响。水声信道仿真技术通过建立水声信道的数学模型,可以模拟实际水声信道的传播特性,为水下通信系统设计和性能评估提供有力支撑。
水声信道特性
水声信道具有以下主要特性:
-
**多径传播:**水声波在水中传播时会发生多次反射和散射,形成多径传播现象。
-
**时变性:**水声信道的特性随时间变化,受温度、盐度、洋流等因素影响。
-
**频谱选择性:**水声信道对不同频率的信号具有不同的衰减和时延特性。
-
**噪声:**水声信道中存在各种噪声,如环境噪声、船舶噪声等。
水声信道仿真方法
水声信道仿真方法主要分为两类:
1. 统计模型法
统计模型法基于水声信道的统计特性,建立数学模型来描述信道的时变衰落、多径时延和噪声分布。常用的统计模型包括瑞利衰落模型、莱斯衰落模型、Jakes模型等。
2. 射线追踪法
射线追踪法基于几何声学原理,将水声信道视为一系列射线传播的路径。通过追踪射线的传播过程,可以计算出信道的时延、衰减和相位等参数。
水声信道仿真技术在水下通信领域有着广泛的应用,包括:
-
**系统设计:**优化通信系统参数,如调制方式、编码方案和天线配置。
-
**性能评估:**评估通信系统的误码率、吞吐量和时延等性能指标。
-
**抗干扰研究:**研究水声信道中的干扰特性,并制定相应的抗干扰措施。
-
**水下导航:**利用水声信道仿真技术辅助水下导航系统设计和性能评估。
结论
水声通信信道仿真技术是水下通信系统设计和性能评估不可或缺的工具。通过建立水声信道的数学模型,仿真技术可以模拟实际信道的传播特性,为水下通信系统优化和性能提升提供有力支撑。
📣 部分代码
%% Deterministic channel parameters:
h0= parameters(1); % surface height (depth) [m]
ht0= parameters(2); % TX height [m]
hr0= parameters(3); % RX height [m]
d0= parameters(4); % channel distance [m]
k= parameters(5); % spreading factor
c= parameters(6); % speed of sound [m/s]
c2= parameters(7); % speed of sound in bottom [m/s] (>1500 for hard, < 1500 for soft)
cut= parameters(8); % do not consider arrivals whose relative strength is below this level
fmin= parameters(9); % minimum frequency [Hz]
B= parameters(10); % bandwidth [Hz]
fmax=fmin+B;
df= parameters(11); % frequency resolution [Hz]
f_vec=(fmin:df:fmax).'; Lf=length(f_vec);
fc=(fmax+fmin)/2;
f0=fmin;
f_vec2=(f0-B/2:df:f0+B+B/2); dif_f=f_vec2-fc;
dt= parameters(12); % time resolution [seconds]
T_SS= parameters(13); % coherence time of the small-scale variations [seconds]
t_vec=(0:dt:T_SS); Lt=length(t_vec);
%% Small-scale channel parameters:
sig2s= parameters(14); % variance of SS surface variations (surfampl^2/2?)
sig2b= parameters(15); % variance of SS bottom variations
B_delp= parameters(16); % 3-dB width of the
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类