Abstract.
1 Introduction
1.1 Related Work
2 Approach
介绍的是LeNet和AlexNet的卷积神经网络的基本架构。
2.1 Visualization with a Deconvnet(反卷积可视化)
反池化:在最小化池中,最大池操作是不可逆的,但是我们可以通过在一组开关变量中记录每个池区中最大值的位置来获得近似反转。在deconvnet中,反池化操作使用这些开关将来自上一层的重建放置到合适的位置,从而保留刺激的结构。参见图1(下图)以了解该过程。
纠正:该convnet使用relu非线性函数,纠正特征映射,从而确保特征映射总是正的。 为了在每一层获得有效的特征重建(也应该是正的),我们通过非线性传递重建的信号。
3 Training Details
4 Convnet Visualization
图2.完全培训模型中的特征可视化。对于第2-5层,我们使用我们的反卷积网络方法在验证数据中显示特征映射的随机子集中的前9个激活,并将其投影到像素空间。我们的重建不是来自模型的样本:它们是来自验证集的重构模式,可在给定的特征映射中导致高激活。对于每个特征映射,我们还显示相应的图像补丁。注意:(i)每个特征图内的强分组,(ii)越高层不变性更大和(iii)图像的判别区域的夸大,例如眼睛和狗的鼻子(第4层,第1行,第1列)。以电子形式最好看。
4.1 Architecture Selection
4.2 Occlusion Sensitivity--懵逼ing~
对于图像分类方法,存在这样的问题:模型是正确的识别出了图像中对象的位置,还是只是通过周围环境进行识别。图7试图通过系统地用灰色正方形遮挡输入图像的不同部分来回答这个问题,并检测分类器的输出。这些例子清楚地表明,模型是在场景中对象进行定位,因为当对象被遮挡时正确的类的概率显著下降。图7还显示了来自顶部卷积层的最强特征映射的可视化,此外,将该映射中的激活(在空间位置上求和)作为遮挡器位置的函数。当遮挡器覆盖可视化中出现的图像区域时,我们看到特征映射激活的强度下降。这表明可视化真正对应于刺激该特征映射的图像结构,因此验证了图4和图2所示的其他可视化。
5 Experiments