凸优化1——仿射集、凸集、锥

本文介绍了凸优化的基础概念,包括仿射集、凸集和锥的定义,以及相关性质。仿射集是由线性组合构成的集合,包含线性方程组的解集;凸集是所有点的凸组合仍在此集合内的集合,如线段、多边形;锥则是所有点的非负齐次组合形成的集合。文章通过超平面、欧几里得球、多面体和半正定锥等例子深入浅出地阐述了这些概念。
摘要由CSDN通过智能技术生成

概念

设 有 k 个 点 x 1 , x 2 , … , x k ∈ C , C 是 一 个 集 合 , 有 k 个 实 数 θ 1 , θ 2 , … , θ k ∈ R 设有k个点x_1,x_2,\ldots,x_k\in C,C是一个集合,有k个实数\theta_1,\theta_2,\ldots,\theta_k \in R kx1,x2,,xkCCkθ1,θ2,,θkR
对于组合:
θ 1 x 1 + θ 2 x 2 + … + θ k x k \theta_1x_1+\theta_2x_2+\ldots+\theta_kx_k θ1x1+θ2x2++θkxk

  • 称为仿射组合:当满足条件: θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1+\theta_2+\cdots+\theta_k = 1 θ1+θ2++θk=1
  • 称为凸组合:当满足条件: θ 1 + θ 2 + ⋯ + θ k = 1 且 θ i ≥ 0 , i = 1 , 2 , ⋯   , k \theta_1+\theta_2+\cdots+\theta_k = 1 且 \theta_i \ge 0,i=1,2,\cdots,k θ1+θ2++θk=1θi0,i=1,2,,k
  • 称为锥组合:当满足条件: θ i ≥ 0 , i = 1 , 2 , ⋯   , k \theta_i \ge 0,i=1,2,\cdots,k θi0,i=1,2,,k

1.1 仿射集

如果集合 C C C中任意点的仿射组合仍然在集合 C C C中,则集合 C C C是仿射的,称为仿射集

关于集合 C C C的子空间

如果 C 是 一 个 仿 射 集 合 并 且 x 0 ∈ C , 则 集 合 C是一个仿射集合并且x_0\in C,则集合 C仿x0C,
V = C − x 0 = { x − x 0 ∣ x ∈ C } V=C-x_0=\{x-x_0|x\in C\} V=Cx0={ x<

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值