鲁棒优化(二)

本文介绍了鲁棒优化中不同类型的不确定集,包括盒式、椭球、基数/预算、多面体和数据驱动的不确定集,强调选择合适的不确定集以平衡模型复杂度和求解精度。此外,文章讨论了Soyster、Ben-tal和Nemirovski、Bertsimas和Sim的鲁棒对等模型,分析了它们的优缺点和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、参数的不确定集

1.1  盒式不确定集(Box Uncertainty Set)

1.2  椭球不确定集(Ellipsoidal Uncertainty Set)

1.3 基数/预算不确定集(Budget uncertainty Set)

1.4 多面体不确定集(Polyhedral Uncertainty Set)

1.5 数据驱动的不确定集(Data-driven Uncertainty Set)

1.6 其他组合的不确定集合

二、对等式转换理论(Robust counterpart)

2.1 Soyster的鲁棒对等模型(矩阵A的参数不确定)

2.2 Ben-tal和Nemirovski鲁棒对等模型

2.3 Bertsimas和Sim鲁棒对等模型

一、参数的不确定集

在鲁棒优化(一)中,我们知道鲁棒优化的求解困难点在于不确定集合的确立,由于不同的不确定集对结果影响十分明显,如果不确定集越精细,模型复杂度就将会越高,求解也就会变的愈加的困难。而当不确定集越宽泛时,所求出的最优解越保守,越是不符合实际的。

因此,基于上述分分析,为了权衡精细和宽泛的关系也为了平衡求解难度和求解精度,如何选择一个适合的不确定集来求解鲁棒优化就显然更为重要了。常见的不确定集主要有如下几类:

1.1  盒式不确定集(Box Uncertainty Set)

### 一阶矩阵中的不确定性集合构建 在机器学习领域,特别是在涉及模型预测的场景下,不确定性估计是一个重要的话题。当讨论到一阶矩阵中构建不确定性集合时,通常指的是通过某种方式来表示和量化模型预测结果的不确定性。 #### 定义不确定性集合 对于给定的一阶矩阵 \( A \),其维度为 \( n \times m \),其中每一项代表某个特征或参数。要构建该矩阵对应的不确定性集合,可以采用以下几种常见方法: 1. **基于方差的方法** 对于每一个元素 \( a_{ij} \in A \),计算其分布的标准差作为不确定性的衡量标准。假设已知每个元素的概率分布,则可以直接利用统计学原理得到相应的置信区间。 ```python import numpy as np # 假设A是一组观测值组成的矩阵 mean_matrix = np.mean(A, axis=0) # 计算均值向量 std_matrix = np.std(A, axis=0) # 计算标准差向量 lower_bound = mean_matrix - 1.96 * (std_matrix / np.sqrt(len(A))) # 下界 upper_bound = mean_matrix + 1.96 * (std_matrix / np.sqrt(len(A))) # 上界 ``` 2. **贝叶斯框架下的后验分布** 如果能够获得先验信息以及似然函数的形式,那么可以通过贝叶斯推断得出各元素的后验概率密度函数。这不仅提供了单点估计外更丰富的信息——即整个可能取值范围内的可能性大小;而且允许进一步分析诸如可信区间的性质。 3. **集成学习视角下的多样性引入** 集成多个独立训练出来的子模型,并记录它们在同一测试样本上的输出差异程度。这种方法借鉴了文献中提到的技术[^2],比如使用不同的初始化、正则化手段或是关注输入的不同区域等方式制造个体间区别,从而形成一个具有内在多样性的整体结构。最终形成的平均响应及其波动情况即可视为所求得的不确定性度量。 4. **蒙特卡洛采样法** 当面对复杂的非线性映射关系难以解析表达的情况时,可通过反复抽样的形式近似模拟真实世界的数据生成机制。具体操作上就是多次重复执行前向传播过程并收集每次的结果集合作为参考依据。 综上所述,在实际应用过程中应根据具体情况选择合适的方式来定义和刻画一阶矩阵内部各个成分之间的相互作用所带来的潜在风险水平。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值