目录
1.1 盒式不确定集(Box Uncertainty Set)
1.2 椭球不确定集(Ellipsoidal Uncertainty Set)
1.3 基数/预算不确定集(Budget uncertainty Set)
1.4 多面体不确定集(Polyhedral Uncertainty Set)
1.5 数据驱动的不确定集(Data-driven Uncertainty Set)
一、参数的不确定集
在鲁棒优化(一)中,我们知道鲁棒优化的求解困难点在于不确定集合的确立,由于不同的不确定集对结果影响十分明显,如果不确定集越精细,模型复杂度就将会越高,求解也就会变的愈加的困难。而当不确定集越宽泛时,所求出的最优解越保守,越是不符合实际的。
因此,基于上述分分析,为了权衡精细和宽泛的关系也为了平衡求解难度和求解精度,如何选择一个适合的不确定集来求解鲁棒优化就显然更为重要了。常见的不确定集主要有如下几类: