鲁棒优化(二)

本文介绍了鲁棒优化中不同类型的不确定集,包括盒式、椭球、基数/预算、多面体和数据驱动的不确定集,强调选择合适的不确定集以平衡模型复杂度和求解精度。此外,文章讨论了Soyster、Ben-tal和Nemirovski、Bertsimas和Sim的鲁棒对等模型,分析了它们的优缺点和适用场景。
摘要由CSDN通过智能技术生成

目录

一、参数的不确定集

1.1  盒式不确定集(Box Uncertainty Set)

1.2  椭球不确定集(Ellipsoidal Uncertainty Set)

1.3 基数/预算不确定集(Budget uncertainty Set)

1.4 多面体不确定集(Polyhedral Uncertainty Set)

1.5 数据驱动的不确定集(Data-driven Uncertainty Set)

1.6 其他组合的不确定集合

二、对等式转换理论(Robust counterpart)

2.1 Soyster的鲁棒对等模型(矩阵A的参数不确定)

2.2 Ben-tal和Nemirovski鲁棒对等模型

2.3 Bertsimas和Sim鲁棒对等模型

一、参数的不确定集

在鲁棒优化(一)中,我们知道鲁棒优化的求解困难点在于不确定集合的确立,由于不同的不确定集对结果影响十分明显,如果不确定集越精细,模型复杂度就将会越高,求解也就会变的愈加的困难。而当不确定集越宽泛时,所求出的最优解越保守,越是不符合实际的。

因此,基于上述分分析,为了权衡精细和宽泛的关系也为了平衡求解难度和求解精度,如何选择一个适合的不确定集来求解鲁棒优化就显然更为重要了。常见的不确定集主要有如下几类:

1.1  盒式不确定集(Box Uncertainty Set)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值