凸优化学习-(十一)保持函数凸性的操作

凸优化学习

今天学习保持函数凸性的操作。

学习笔记

一、非负加权和。

形如:
若 f 1 ⋯ f m , 则 f ∑ i = 1 m w i f i 为 凸 w i ≥ 0 , ∀ i 若f_1\cdots f_m,则f\sum^{m}_{i=1}w_if_i为凸\qquad w_i\ge0,\forall i f1fmfi=1mwifiwi0,i
或:
若 f ( x , y ) 对 任 意 y ∈ A , f ( x , y ) 均 为 凸 , 且 ∀ y ∈ A w ( y ) ≥ 0 , 则 g ( x ) = ∫ y ∈ A w ( y ) f ( x , y ) d y 为 凸 若f(x,y)对任意y\in A,f(x,y)均为凸,且\forall y\in A\quad w(y)\ge0,则\\ g(x)=\int _{y\in A}w(y)f(x,y)\text dy为凸 f(x,y)yA,f(x,y)yAw(y)0,g(x)=yAw(y)f(x,y)dy
第二个其实就是无数凸函数非负加权和。需要说明的是,其中 f ( x , y ) f(x,y) f(x,y)对于 x , y x,y x,y是联合凸的,即 jointly convex \text{jointly convex} jointly convex,对于 x x x y y y则不一定凸。

二、仿射映射

1.变量仿射

有 凸 函 数 f : R n → R , 则 函 数 g ( x ) = f ( A x + b ) 为 凸 , 其 中 A ∈ R m × n b ∈ R m dom g = { A x + b ∈ dom f } 有凸函数f:R^n\rightarrow R,则函数g(x)=f(\textbf{A}x+b)为凸,其中\\ \textbf A \in R^{m×n}\quad b\in R^m\quad \text{dom}g=\lbrace\textbf Ax+b\in \text{dom}f\rbrace f:RnR,g(x)=f(Ax+b)ARm×nbRmdomg={Ax+bdomf}

2.函数仿射

若 : f i : R n → R , i = 1 , ⋯   , m 为 凸 , 则 g ( x ) = A T [ f 1 ( x ) ⋯ f m ( x ) ] T + b A ∈ R n , b ∈ R 为 凸 。 若: f_i:R^n\rightarrow R,i=1,\cdots,m为凸,则g(x)=A^T[f_1(x)\cdots f_m(x)]^T+b \quad A\in R^n,b\in R为凸。 fi:RnR,i=1,,mg(x)=AT[f1(x)fm(x)]T+bARn,bR

三、多个凸函数的极大值函数为凸

形如:
f ( x ) = max ⁡ { f i ( x ) } i = 1 , ⋯   , n , f i ( x ) 为 凸 函 数 f(x)=\max \lbrace f_i(x)\rbrace\qquad i=1,\cdots,n,f_i(x)为凸函数 f(x)=max{fi(x)}i=1,,n,fi(x)
f ( x ) f(x) f(x)为凸函数, dom f = dom f 1 ∩ dom f 2 \text{dom}f=\text{dom}f_1\cap \text{dom}f_2 domf=domf1domf2
n → + ∞ n\rightarrow +\infty n+时,也可写为:
若 f ( x , y ) 对 x 为 凸 函 数 , ∀ y ∈ A 则 g = sup ⁡ y ∈ A f ( x , y ) 为 凸 函 数 若f(x,y)对x为凸函数,\forall y\in A则\\ g=\sup\limits_{y\in A}f(x,y)为凸函数 f(x,y)xyAg=yAsupf(x,y)
例1:
f ( x ) = max ⁡ { x 2 , x } f(x)=\max\lbrace x^2,x\rbrace f(x)=max{x2,x}
在这里插入图片描述
例2:向量中r个最大元素和
形如:
f ( x ) = ∑ i = 1 r x [ i ] = max ⁡ { x i 1 + ⋯ + x i r ∣ 1 ≤ i 1 ≤ ⋯ ≤ i r ≤ n } \begin{aligned} f(x) &=\sum^r_{i=1}x[i]\\ & =\max\lbrace x_{i_1}+\cdots+x_{i_r}\mid 1\le i_1\le\cdots\le i_r\le n\rbrace \end{aligned} f(x)=i=1rx[i]=max{xi1++xir1i1irn}
其中 x [ i ] x[i] x[i]是指排序第 i i i大的元素。
这个问题等价于任意 r r r个求和找最大,相当于极大值函数的仿射映射。
例3:实对称阵的最大特征值为凸
形如:
f ( x ) = λ max ⁡ ( X ) dom f = S m f(x)=\lambda_{\max}(\textbf X)\qquad \text{dom}f=S^m f(x)=λmax(X)domf=Sm
是凸函数。
证明:
设 λ 为 一 个 特 征 值 , y 为 特 征 向 量 , 有 : 设\lambda为一个特征值,y为特征向量,有: λy
X ⋅ y = λ ⋅ y y T X y = y T λ y ⇔ y T X y = λ ∥ y ∥ 2 2 ⇔ λ = y T X y λ ∥ y ∥ 2 2 ⇔ λ = y T X y , ∥ y ∥ 2 2 = 1 时 ⇔ λ m a x ( X ) = sup ⁡ { y T X y ∣ ∥ y ∥ 2 2 = 1 } \begin{aligned} & & \textbf X\cdot y&=\lambda\cdot y\\ & &y^T \textbf X y&=y^T\lambda y\\ \Leftrightarrow& & y^T \textbf X y&=\lambda\|y\|_2^2\\ \Leftrightarrow& &\lambda&=\frac{y^T \textbf X y}{\lambda\|y\|_2^2}\\ \Leftrightarrow& &\lambda&= y^T \textbf X y,\|y\|_2^2=1时\\ \Leftrightarrow& &\lambda_{max}(\textbf X)&=\sup\lbrace y^T\textbf X y\mid\|y\|_2^2=1\rbrace\\ \end{aligned} XyyTXyyTXyλλλmax(X)=λy=yTλy=λy22=λy22yTXy=yTXy,y22=1=sup{yTXyy22=1}

四、函数组合

八条结论很重要,需要判断函数凸性的时候勤查询。
形如:
f ( x ) = h ( g ( x ) ) dom f = { x ∈ dom g ∣ g ( x ) ∈ dom h } h : R k → R g : R n → R k f : h ∘ g : R n → R f(x)=h\big(g(x)\big)\qquad \text{dom}f=\lbrace x\in\text{dom}g\mid g(x)\in \text{dom} h\rbrace\\ h:R^k\rightarrow R\qquad g:R^n\rightarrow R^k\qquad f:h\circ g:R^n\rightarrow R f(x)=h(g(x))domf={xdomgg(x)domh}h:RkRg:RnRkf:hg:RnR
1°.设所有函数二阶可微
f ′ ′ ( x ) = h ′ ′ ( g ( x ) ) g ′ ( x ) 2 + h ′ ( g ( x ) ) g ′ ′ ( x ) f''(x)=h''\big(g(x)\big)g'(x)^2+h'\big(g(x)\big)g''(x) f(x)=h(g(x))g(x)2+h(g(x))g(x)
有如下四条结论:
f 凸 ⇔ 1. h 为 凸 , 不 降 , g 为 凸 2. h 为 凸 , 不 增 , g 为 凹 f 凹 ⇔ 3. h 为 凹 , 不 降 , g 为 凹 4. h 为 凹 , 不 增 , g 为 凸 \begin{aligned} f凸& & \Leftrightarrow & 1.h为凸,不降,g为凸\\ && &2.h为凸,不增,g为凹\\ f凹&& \Leftrightarrow& 3.h为凹,不降,g为凹\\ && &4.h为凹,不增,g为凸\\ \end{aligned} ff1.hg2.hg3.hg4.hg
2°.设所有函数二阶不可微
f 凸 ⇔ 5. h 为 凸 , h ~ 不 降 , g 为 凸 6. h 为 凸 , h ~ 不 增 , g 为 凹 f 凹 ⇔ 7. h 为 凹 , h ~ 不 降 , g 为 凹 8. h 为 凹 , h ~ 不 增 , g 为 凸 \begin{aligned} f凸& & \Leftrightarrow & 5.h为凸,\widetilde{h}不降,g为凸\\ && &6.h为凸,\widetilde{h}不增,g为凹\\ f凹&& \Leftrightarrow& 7.h为凹,\widetilde{h}不降,g为凹\\ && &8.h为凹,\widetilde{h}不增,g为凸\\ \end{aligned} ff5.hh g6.hh g7.hh g8.hh g
例1:
g g g为凸, exp ⁡ { g ( x ) } \exp\lbrace g(x)\rbrace exp{g(x)}为凸。
利用准则1判断即可。
例2:
g g g为凹, g > 0 g>0 g>0 log ⁡ ( g ( x ) ) \log\big(g(x)\big) log(g(x))为凹。
利用准则7判断即可。
例3:
g g g为凹, g > 0 , 1 g ( x ) g>0,\frac{1}{g(x)} g>0,g(x)1为凸。

个人思考

八个准则要使用好,个人总结遇到函数凸性判断步骤:
1.先判断定义域是不是凸集。
2.通过函数组合判断。
3.通过定义判断。

纸质笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Chichy凸优化是一种基于凸优化理论的优化方法。凸优化是数学中研究凸函数的一门学科,在优化问题中具有广泛的应用。Chichy是一家专注于优化技术的公司,他们开发了一种基于凸优化的解决方案。 Chichy凸优化方法的核心思想是通过寻找问题的最优解来优化系统的性能。它将问题表达为一个凸优化问题,并利用凸优化的性质来求解最优解。具体而言,Chichy凸优化方法将目标函数表示为凸函数,并通过添加约束条件来限制问题的解空间,使得优化问题满足凸性质。 Chichy凸优化的优点是可以保证找到全局最优解,而不仅仅是局部最优解。这是因为凸函数的性质保证了其局部最优解即为全局最优解。此外,Chichy凸优化方法在求解速度和稳定性方面具有优势。传统的优化方法可能会陷入局部最优解或者求解速度过慢,而Chichy凸优化方法通过利用凸性质解决了这些问题。 总而言之,Chichy凸优化是一种基于凸优化理论的解决方案,通过寻找问题的凸最优解来优化系统的性能。它具有保证找到全局最优解、求解速度快以及稳定性良好等优点。Chichy凸优化在实际应用中能够帮助我们解决各种优化问题,提高系统的效率和性能。 ### 回答2: Chichy凸优化答案是关于凸优化问题的解决方案。在数学领域,凸优化是一个优化问题的一种特殊类型,其中目标函数是凸的,约束条件也是凸的。 在解决凸优化问题时,Chichy提供了以下解决方案: 1. 凸优化问题的定义:Chichy给出了凸优化问题的准确定义。凸优化问题的目标是最小化一个凸函数,同时满足一组凸约束条件。 2. 最优性条件:Chichy指出了对于凸优化问题,如果满足一定的条件,解必然是全局最优解。这些条件包括目标函数凸性以及约束条件的凸性。 3. 解法:Chichy介绍了几种解决凸优化问题的常用方法,包括梯度下降法、拉格朗日乘子法和内点法等。这些方法对于不同类型的凸优化问题都有很好的适用性。 4. 应用领域:Chichy列举了凸优化在现实中的一些应用领域,如机器学习、信号处理、交通流量优化等。这些领域中的问题可以通过凸优化来求解。 总的来说,Chichy凸优化答案提供了关于凸优化问题的定义、最优性条件、解决方法以及应用领域的相关知识。这些知识对于研究凸优化问题和解决实际应用中的问题都具有重要的指导意义。 ### 回答3: 对于Chichy凸优化问题,凸优化是指在约束条件下,通过最小化一个凸函数来寻求最优解的问题。而Chichy凸优化是指在存在多个约束条件下的凸优化问题。 Chichy凸优化问题具有以下特点: 1. 目标函数是一个凸函数,即二阶导数大于等于零,函数曲线是凸的。 2. 约束条件是多个不等式或者等式。不等式约束条件在函数曲线的下方,等式约束条件限定了函数的取值范围。 3. 最优解是在可行域内的某个点上取得的,使得目标函数取得最小值。 在求解Chichy凸优化问题时,可以采用以下方法: 1. 拉格朗日乘子法:将约束条件引入目标函数,构建拉格朗日函数,通过求导等于零的方式求得最优解。但是这种方法只适用于等式约束条件,不适用于不等式约束条件。 2. KKT条件:通过KKT条件来求解。KKT条件是一组必要条件,其中包括目标函数的梯度与约束条件的梯度线性相关,且满足互补松弛条件。通过解KKT条件可以求得最优解。 3. 内点法:内点法是一种迭代算法,通过调整搜索路径使其逐渐接近最优解。内点法适用于具有大规模变量和约束的问题。 总之,Chichy凸优化问题是一类具有多个约束条件的凸优化问题。通过合适的求解方法可以找到最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值