凸优化学习-(十一)保持函数凸性的操作

凸优化学习

今天学习保持函数凸性的操作。

学习笔记

一、非负加权和。

形如:
若 f 1 ⋯ f m , 则 f ∑ i = 1 m w i f i 为 凸 w i ≥ 0 , ∀ i 若f_1\cdots f_m,则f\sum^{m}_{i=1}w_if_i为凸\qquad w_i\ge0,\forall i f1fmfi=1mwifiwi0,i
或:
若 f ( x , y ) 对 任 意 y ∈ A , f ( x , y ) 均 为 凸 , 且 ∀ y ∈ A w ( y ) ≥ 0 , 则 g ( x ) = ∫ y ∈ A w ( y ) f ( x , y ) d y 为 凸 若f(x,y)对任意y\in A,f(x,y)均为凸,且\forall y\in A\quad w(y)\ge0,则\\ g(x)=\int _{y\in A}w(y)f(x,y)\text dy为凸 f(x,y)yA,f(x,y)yAw(y)0,g(x)=yAw(y)f(x,y)dy
第二个其实就是无数凸函数非负加权和。需要说明的是,其中 f ( x , y ) f(x,y) f(x,y)对于 x , y x,y x,y是联合凸的,即 jointly convex \text{jointly convex} jointly convex,对于 x x x y y y则不一定凸。

二、仿射映射

1.变量仿射

有 凸 函 数 f : R n → R , 则 函 数 g ( x ) = f ( A x + b ) 为 凸 , 其 中 A ∈ R m × n b ∈ R m dom g = { A x + b ∈ dom f } 有凸函数f:R^n\rightarrow R,则函数g(x)=f(\textbf{A}x+b)为凸,其中\\ \textbf A \in R^{m×n}\quad b\in R^m\quad \text{dom}g=\lbrace\textbf Ax+b\in \text{dom}f\rbrace f:RnR,g(x)=f(Ax+b)ARm×nbRmdomg={Ax+bdomf}

2.函数仿射

若 : f i : R n → R , i = 1 , ⋯   , m 为 凸 , 则 g ( x ) = A T [ f 1 ( x ) ⋯ f m ( x ) ] T + b A ∈ R n , b ∈ R 为 凸 。 若: f_i:R^n\rightarrow R,i=1,\cdots,m为凸,则g(x)=A^T[f_1(x)\cdots f_m(x)]^T+b \quad A\in R^n,b\in R为凸。 fi:RnR,i=1,,mg(x)=AT[f1(x)fm(x)]T+bARn,bR

三、多个凸函数的极大值函数为凸

形如:
f ( x ) = max ⁡ { f i ( x ) } i = 1 , ⋯   , n , f i ( x ) 为 凸 函 数 f(x)=\max \lbrace f_i(x)\rbrace\qquad i=1,\cdots,n,f_i(x)为凸函数 f(x)=max{fi(x)}i=1,,n,fi(x)
f ( x ) f(x) f(x)为凸函数, dom f = dom f 1 ∩ dom f 2 \text{dom}f=\text{dom}f_1\cap \text{dom}f_2 domf=domf1domf2
n → + ∞ n\rightarrow +\infty n+时,也可写为:
若 f ( x , y ) 对 x 为 凸 函 数 , ∀ y ∈ A 则 g = sup ⁡ y ∈ A f ( x , y ) 为 凸 函 数 若f(x,y)对x为凸函数,\forall y\in A则\\ g=\sup\limits_{y\in A}f(x,y)为凸函数 f(x,y)xyAg=yAsupf(x,y)
例1:
f ( x ) = max ⁡ { x 2 , x } f(x)=\max\lbrace x^2,x\rbrace f(x)=max{x2,x}
在这里插入图片描述
例2:向量中r个最大元素和
形如:
f ( x ) = ∑ i = 1 r x [ i ] = max ⁡ { x i 1 + ⋯ + x i r ∣ 1 ≤ i 1 ≤ ⋯ ≤ i r ≤ n } \begin{aligned} f(x) &=\sum^r_{i=1}x[i]\\ & =\max\lbrace x_{i_1}+\cdots+x_{i_r}\mid 1\le i_1\le\cdots\le i_r\le n\rbrace \end{aligned} f(x)=i=1rx[i]=max{xi1++xir1i1irn}
其中 x [ i ] x[i] x[i]是指排序第 i i i大的元素。
这个问题等价于任意 r r r个求和找最大,相当于极大值函数的仿射映射。
例3:实对称阵的最大特征值为凸
形如:
f ( x ) = λ max ⁡ ( X ) dom f = S m f(x)=\lambda_{\max}(\textbf X)\qquad \text{dom}f=S^m f(x)=λmax(X)domf=Sm
是凸函数。
证明:
设 λ 为 一 个 特 征 值 , y 为 特 征 向 量 , 有 : 设\lambda为一个特征值,y为特征向量,有: λy
X ⋅ y = λ ⋅ y y T X y = y T λ y ⇔ y T X y = λ ∥ y ∥ 2 2 ⇔ λ = y T X y λ ∥ y ∥ 2 2 ⇔ λ = y T X y , ∥ y ∥ 2 2 = 1 时 ⇔ λ m a x ( X ) = sup ⁡ { y T X y ∣ ∥ y ∥ 2 2 = 1 } \begin{aligned} & & \textbf X\cdot y&=\lambda\cdot y\\ & &y^T \textbf X y&=y^T\lambda y\\ \Leftrightarrow& & y^T \textbf X y&=\lambda\|y\|_2^2\\ \Leftrightarrow& &\lambda&=\frac{y^T \textbf X y}{\lambda\|y\|_2^2}\\ \Leftrightarrow& &\lambda&= y^T \textbf X y,\|y\|_2^2=1时\\ \Leftrightarrow& &\lambda_{max}(\textbf X)&=\sup\lbrace y^T\textbf X y\mid\|y\|_2^2=1\rbrace\\ \end{aligned} XyyTXyyTXyλλλmax(X)=λy=yTλy=λy22=λy22yTXy=yTXy,y22=1=sup{yTXyy22=1}

四、函数组合

八条结论很重要,需要判断函数凸性的时候勤查询。
形如:
f ( x ) = h ( g ( x ) ) dom f = { x ∈ dom g ∣ g ( x ) ∈ dom h } h : R k → R g : R n → R k f : h ∘ g : R n → R f(x)=h\big(g(x)\big)\qquad \text{dom}f=\lbrace x\in\text{dom}g\mid g(x)\in \text{dom} h\rbrace\\ h:R^k\rightarrow R\qquad g:R^n\rightarrow R^k\qquad f:h\circ g:R^n\rightarrow R f(x)=h(g(x))domf={xdomgg(x)domh}h:RkRg:RnRkf:hg:RnR
1°.设所有函数二阶可微
f ′ ′ ( x ) = h ′ ′ ( g ( x ) ) g ′ ( x ) 2 + h ′ ( g ( x ) ) g ′ ′ ( x ) f''(x)=h''\big(g(x)\big)g'(x)^2+h'\big(g(x)\big)g''(x) f(x)=h(g(x))g(x)2+h(g(x))g(x)
有如下四条结论:
f 凸 ⇔ 1. h 为 凸 , 不 降 , g 为 凸 2. h 为 凸 , 不 增 , g 为 凹 f 凹 ⇔ 3. h 为 凹 , 不 降 , g 为 凹 4. h 为 凹 , 不 增 , g 为 凸 \begin{aligned} f凸& & \Leftrightarrow & 1.h为凸,不降,g为凸\\ && &2.h为凸,不增,g为凹\\ f凹&& \Leftrightarrow& 3.h为凹,不降,g为凹\\ && &4.h为凹,不增,g为凸\\ \end{aligned} ff1.hg2.hg3.hg4.hg
2°.设所有函数二阶不可微
f 凸 ⇔ 5. h 为 凸 , h ~ 不 降 , g 为 凸 6. h 为 凸 , h ~ 不 增 , g 为 凹 f 凹 ⇔ 7. h 为 凹 , h ~ 不 降 , g 为 凹 8. h 为 凹 , h ~ 不 增 , g 为 凸 \begin{aligned} f凸& & \Leftrightarrow & 5.h为凸,\widetilde{h}不降,g为凸\\ && &6.h为凸,\widetilde{h}不增,g为凹\\ f凹&& \Leftrightarrow& 7.h为凹,\widetilde{h}不降,g为凹\\ && &8.h为凹,\widetilde{h}不增,g为凸\\ \end{aligned} ff5.hh g6.hh g7.hh g8.hh g
例1:
g g g为凸, exp ⁡ { g ( x ) } \exp\lbrace g(x)\rbrace exp{g(x)}为凸。
利用准则1判断即可。
例2:
g g g为凹, g > 0 g>0 g>0 log ⁡ ( g ( x ) ) \log\big(g(x)\big) log(g(x))为凹。
利用准则7判断即可。
例3:
g g g为凹, g > 0 , 1 g ( x ) g>0,\frac{1}{g(x)} g>0,g(x)1为凸。

个人思考

八个准则要使用好,个人总结遇到函数凸性判断步骤:
1.先判断定义域是不是凸集。
2.通过函数组合判断。
3.通过定义判断。

纸质笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值