机器人学导论(John J Craig,2017)学习笔记(更新中)

Lecture1 Introduction

Introduction of robotics

  1. reference textbook:
    1. Cai ZiXing,2015
    1. Saeed B. Niku.,2013
    2. Siciliano,B.,2010

Types of robots

r o b o t { R o b o t   m a n i p u l a t o r s M o b i l e   r o b o t s { G r o u n d   r o b o t s { W h e e l e d   r o b o t s L e g g e d   r o b o t s S u b m a r i n e   r o b o t s A e r i a l   r o b o t s robot \begin{cases} Robot\ manipulators \\[3ex] Mobile\ robots \begin{cases} Ground\ robots \begin{cases} Wheeled\ robots\\ Legged\ robots \end{cases} \\[2ex] Submarine\ robots\\[2ex] Aerial\ robots\\ \end{cases} \end{cases} robot Robot manipulatorsMobile robots Ground robots{Wheeled robotsLegged robotsSubmarine robotsAerial robots

Lecture2 Manufacturing Systems & Robot Kinematics

1. manufacturing system

1.1 manufacturing classification

  1. project
    1. one of a kind(ship & nuclear power plant) and complex and site building
  2. job shop
    1. not site building and low volume and production quantities
  3. repetitive
    1. fixed routing,repeat
  4. line
    1. delivery time required is short,require many different models and options
  5. continuous
    1. volume is high…,like chemical components

2. kinematicas of robot manipulator

2.1 robot manipulators

2.1.1 configuration
  1. robot arms
    1. rigid bodies(links) connected by joints
    2. joints:
      1. revolute, prismatic, spherical
    3. drive:
      1. electric or hydraulic
    4. end-effector(tool):
      1. mounted on a flange or plate secured to the wrist joint of robot
  2. robot configuration
    1. cartesian(笛卡尔): PPP
    2. cylindrical(圆柱): RPP
    3. articulated(铰接): RRP
    4. spherical(球坐标): RRR
    5. SCARA: RRP(selective compliance assembly robot arm)
    6. hand coordinate
  3. motion control methods
    1. point to point control
      1. a sequence of discrete points
      2. like: spot welding(点焊), pick-and-place, loading and unloading
    2. continuous path control
      1. follow a prescribed path, controlled-path motion
      2. like: spray painting, Arc welding(弧焊), gluing
2.1.2 robot specifications
specification
  1. number of axes:
    1. major axes,(1-3)=>position the wrist
    2. minor axes,(4-6)=>orient the rool
    3. redundant,(7-n)=>reaching around obstacles, avoiding undesirable configuration
  2. degree of freedom(DOF)
  3. workspace
  4. payload(load capacity)
  5. precision v.s. repeatability(精度和集中度)
DOF
  1. The Chebychev-Grübler-Kutzbach formula:
    1. M = d ( n − g − 1 ) + ∑ i = 1 g f i M=d(n-g-1)+ \sum_{i=1}^{g}{f_{i}} M=d(ng1)+i=1gfi
    • M: the mobility or the system DOF
    • d: the order of the sysem (d=3 for planar motion,and d=6 for spatial motion)
    • n: the number of the links including the frames
    • g: the number of joints
    • f i f_i fi: the number of DOFs for the ith joint
  2. DOF of joints
    1. cylindrical joint (1R,1P):DOF=2 , 2 components
    2. prismatic joint (1P):DOF=1 , 2 components
    3. ball(or spherical) joint: DOF=3 , 1 components
    4. Hooker joint(or U(universe)-jont) : DOF=2 ,1 components
    5. revolute joint: DOF=1 ,2 components

2.2 kinematics

2.2.1 what is kinematics
  1. forward kinematics:
    1. given joint variables, find end-effection position
  2. inverse kinematics
    1. given end-effectation position and orientation, find joint variables
2.2.2 preliminary
robot reference frames
  1. world frame -> fixed
  2. joint frame
  3. tool frame
coordinate transformation
rotation only
  1. reference coordinate f
  2. rame OXYZ
  3. body-attached frame O’uvw
    point represented in OXYZ is P x y z = [ p x , p y , p z ] T P_{xyz}=[p_x,p_y,p_z]^T Pxyz=[px,py,pz]T, or p x y z = p x i x + p y j y + p z k z \mathbf{p}_{xyz}=p_x\mathbf{i}_x+p_y\mathbf{j}_y+p_z\mathbf{k}_z pxyz=pxix+pyjy+pzkz
    point represented in O’uvw:
    p u v w = p u i u + p v j v + p w k w \mathbf{p}_{uvw}=p_u\mathbf{i}_u+p_v\mathbf{j}_v+p_w\mathbf{k}_w puvw=puiu+pvjv+pwkw

  1. uvw to XYZ coordinate transformation
    • rotation only: p x y z = R p u v w \mathbf{p}_{xyz}=R\mathbf{p}_{uvw} pxyz=Rpuvw
      we new: p x = i ⋅ p p_x=\mathbf{i}\cdot\mathbf{p} px=ip , so p x y z = [ i x T j y T k z T ] ⋅ p \mathbf{p}_{xyz}=\left[ \begin{matrix}\mathbf{i}_x^T\\\mathbf{j}_y^T\\\mathbf{k}_z^T\end{matrix}\right]\cdot\mathbf{p} pxyz= ixTjyTkzT p
      where, p = [ i u j v k w ] [ p u p v p w ] \mathbf{p}=\left[\begin{matrix}\mathbf{i}_u&\mathbf{j}_v&\mathbf{k}_w\end{matrix}\right]\left[\begin{matrix}p_u\\p_v\\p_w\end{matrix}\right] p=[iujvkw] pupvpw
      so, that [ p x p y p z ] = [ i x ⋅ i u i x ⋅ j v i x ⋅ k w j y ⋅ i u j y ⋅ j v j y ⋅ k w k z ⋅ i u k z ⋅ j v k z ⋅ k w ] ⋅ [ p u p v p w ] \left[\begin{matrix}p_x\\p_y\\p_z\end{matrix}\right]=\left[\begin{matrix} \mathbf{i}_x\cdot\mathbf{i}_u&\mathbf{i}_x\cdot\mathbf{j}_v&\mathbf{i}_x\cdot\mathbf{k}_w\\ \mathbf{j}_y\cdot\mathbf{i}_u&\mathbf{j}_y\cdot\mathbf{j}_v&\mathbf{j}_y\cdot\mathbf{k}_w\\ \mathbf{k}_z\cdot\mathbf{i}_u&\mathbf{k}_z\cdot\mathbf{j}_v&\mathbf{k}_z\cdot\mathbf{k}_w\\ \end{matrix} \right]\cdot\left[\begin{matrix}p_u\\p_v\\p_w\end{matrix}\right] pxpypz = ixiujyiukziuixjvjyjvkzjvixkwjykwkzkw pupvpw
      so so that:
      • Rot(x, θ \theta θ)= [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] \left[\begin{matrix}1&0&0\\0&\cos\theta&-\sin\theta\\0&\sin\theta&\cos\theta\end{matrix}\right] 1000cosθsinθ0sinθcosθ
      • Rot(y, θ \theta θ)= [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] \left[\begin{matrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{matrix}\right] cosθ0sinθ010sinθ0cosθ
      • Rot(z, θ \theta θ)= [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] \left[\begin{matrix}\cos\theta&-\sin\theta&0\\\sin\theta&\cos\theta&0\\0&0&1\end{matrix}\right] cosθsinθ0sinθcosθ0001
        Matrix R 可看作转换矩阵,也可看做对向量做旋转操作的旋转矩阵
  2. XYZ to uvw coordinate transformation
    to find matrix Q:let p u v w = Q ⋅ p x y z \mathbf{p}_{uvw}=Q\cdot\mathbf{p}_{xyz} puvw=Qpxyz
    similarly that:
    [ p u p v p w ] = [ i u ⋅ i x i u ⋅ j y i u ⋅ k z j v ⋅ i x j v ⋅ j y j v ⋅ k z k w ⋅ i x k w ⋅ j y k w ⋅ k z ] ⋅ [ p x p y p z ] \left[\begin{matrix}p_u\\p_v\\p_w\end{matrix}\right]=\left[\begin{matrix} \mathbf{i}_u\cdot\mathbf{i}_x&\mathbf{i}_u\cdot\mathbf{j}_y&\mathbf{i}_u\cdot\mathbf{k}_z\\ \mathbf{j}_v\cdot\mathbf{i}_x&\mathbf{j}_v\cdot\mathbf{j}_y&\mathbf{j}_v\cdot\mathbf{k}_z\\ \mathbf{k}_w\cdot\mathbf{i}_x&\mathbf{k}_w\cdot\mathbf{j}_y&\mathbf{k}_w\cdot\mathbf{k}_z\\ \end{matrix} \right]\cdot\left[\begin{matrix}p_x\\p_y\\p_z\end{matrix}\right] pupvpw = iuixjvixkwixiujyjvjykwjyiukzjvkzkwkz pxpypz
    we can figure out that:
    Q = R − 1 = R T Q=R^{-1}=R^T Q=R1=RT
    Matrix Q 可看作转换矩阵,也可看做对向量做与R相反 θ \theta θ的旋转操作的旋转矩阵

composite rotation matrix

  1. a sequence of finite rotations:
    1. matrix multiplications do not commute
    2. rules:
      • if rotating coordinate O-U-V-W is rotating about principal axis of OXYZ frame,then pre-multiply the R to the I
      • if rotating coordinate O-U-V-W is rotating about principal axis of OUVW frame,then post-multiply the R to the I
Homogeneous representation
  1. coordiante transformation from {B} to {A}:
    A r P = A R B ⋅ B r P + A r O ′ ^Ar^P=^AR_B\cdot^Br^P+^Ar^{O^\prime} ArP=ARBBrP+ArO
  2. Homogeneous transformation matrix:
    A T B = [ A R B A r O ′ 0 1 × 3 1 ] ^AT_B=\left[\begin{matrix}^AR_B&^Ar^{O^\prime}\\\mathbf{0}_{1\times3}&1\end{matrix}\right] ATB=[ARB01×3ArO1]
    [ A r P 1 ] = A T B ⋅ [ B r P 1 ] \left[\begin{matrix}^Ar_P\\1\end{matrix}\right]=^AT_B\cdot\left[\begin{matrix}^Br_P\\1\end{matrix}\right] [ArP1]=ATB[BrP1]

composite Homogeneous transformation matrix

  • similar to composite rotation matrix
Orientation Representation
  1. Euler angles reoresentation ( ϕ \phi ϕ, θ \theta θ, ψ \psi ψ )
    • many different typses
      • Euler angle I:
        • ϕ \phi ϕ: about OZ axis
        • θ \theta θ: about OU axis
        • ψ \psi ψ: about OW axis
      • Euler angle II
        • ϕ \phi ϕ: about OZ axis
        • θ \theta θ: about OV axis
        • ψ \psi ψ: about OW axis
      • Roll-Pitch-Yaw
        • ϕ \phi ϕ: about OX axis
        • θ \theta θ: about OY axis
        • ψ \psi ψ: about OZ axis
    • description of Euler angle representations

Lecture3 Mathematical Background

3.1 Matrix

  • symmetric matrix:
    A T = A   ⇒   a k j = a j k A^T=A\ \Rightarrow\ a_{kj}=a_{jk} AT=A  akj=ajk
  • skew-symmetric matrix:
    A T = − A   ⇒   a k j = − a j k A^T=-A\ \Rightarrow \ a_{kj}=-a_{jk} AT=A  akj=ajk
  • orthogonal matrix:
    A T = A − 1 A^T=A^{-1} AT=A1
    any real square matrix A may be written as the sum of a symmetric matrix R and a skew-symmetric matrix S,where: R = 1 2 ( A + A T )     S = 1 2 ( A − A T ) R=\frac{1}{2}(A+A^T)\ \ \ S=\frac{1}{2}(A-A^T) R=21(A+AT)   S=21(AAT)
  • triangular matrix(上\下三角)
  • diagonal matrix(对角矩阵)
  • scalar matrix [ a 0 0 0 a 0 0 0 a ] \left[\begin{matrix}a&0&0\\0&a&0\\0&0&a\end{matrix}\right] a000a000a
  • unit matrix(单位)
  • inner product or dot product:
    a ⋅ b = a T b \mathbf{a}\cdot\mathbf{b}=\mathbf{a}^T\mathbf{b} ab=aTb
  • idempotent matrix:
    A 2 = A A^2=A A2=A
  • orthogonality:
    a ⋅ b = 0 ⇒ a  and  b  is orthogonality \mathbf{a}\cdot\mathbf{b}=0\Rightarrow \mathbf{a}{\text{ and }}\mathbf{b}\text{ is orthogonality} ab=0a and b is orthogonality
  • vector product:
    V = a × b = [ a 2 b 3 − a 3 b 2 , a 3 b 1 − a 1 b 3 , a 1 b 2 − a 2 b 1 ] V=\mathbf{a}\times\mathbf{b}=[a_2b_3-a_3b_2,a_3b_1-a_1b_3,a_1b_2-a_2b_1] V=a×b=[a2b3a3b2,a3b1a1b3,a1b2a2b1]
    = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ =\left|\begin{matrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\a_1&a_2&a_3\\b_1&b_2&b_3\end{matrix}\right| = ia1b1ja2b2ka3b3
    ∣ V ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ γ |V|=|a||b|\sin\gamma V=a∣∣bsinγ
  • scalar triple product or mixed triple product:
    a = [ a 1 , a 2 , a 3 ] , b = [ b 1 , b 2 , b 3 ] c = [ c 1 , c 2 , c 3 ] \mathbf{a}=[a_1,a_2,a_3],\mathbf{b}=[b_1,b_2,b_3]\mathbf{c}=[c_1,c_2,c_3] a=[a1,a2,a3],b=[b1,b2,b3]c=[c1,c2,c3]
    ( a    b    c ) = a ⋅ ( b × c ) = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ (\mathbf{a}\ \ \mathbf{b}\ \ \mathbf{c})=\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=\left|\begin{matrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{matrix}\right| (a  b  c)=a(b×c)= a1b1c1a2b2c2a3b3c3
  • tr(A):
    t r ( A ) = ∑ i = 1 3 a i i tr(A)= \sum_{i=1}^{3}{a_{ii}} tr(A)=i=13aii
  • Vert(A)
    V e r t ( A ) = 1 2 [ a 32 − a 23 a 13 − a 31 a 21 − a 12 ] Vert(A)=\frac{1}{2}\left[\begin{matrix}a_{32}-a_{23}\\a_{13}-a_{31}\\a_{21}-a_{12}\end{matrix}\right] Vert(A)=21 a32a23a13a31a21a12
  • linear transformations:
    • isomorphism: a linear transformation of a vector space γ \gamma γ into itself
    • linear transformation of the 3D space
      • projections
      • reflections
      • rotation
      • affine(仿射)
  • properties of orthogonal projection P of ε 3 \varepsilon^3 ε3( R 3 R^3 R3):
    P 2 = P  (idempotent) P^2=P{\text{ (idempotent)}} P2=P (idempotent) P ⋅ n = 0  n: unit normal P\cdot\mathbf{n}=0{\text{ n: unit normal}} Pn=0 n: unit normal
  • orthogonal projection: P onto Π \Pi Π
    P = 1 − n n T P=\mathbf{1}-\mathbf{n}\mathbf{n}^T P=1nnT
  • reflection R of ε 3 \varepsilon^3 ε3 onto a plane Π \Pi Πpassing through the origin:
    R = 1 − 2 n n T R=\mathbf{1}-2\mathbf{n}\mathbf{n}^T R=12nnT
  • component v \mathbf{v} v along e \mathbf{e} e and normal v e \mathbf{v}_e ve
    v e = e e T v \mathbf{v}_e=\mathbf{e}\mathbf{e}^T\mathbf{v} ve=eeTv
    v n = ( 1 − e e T ) v \mathbf{v}_n=(\mathbf{1}-\mathbf{e}\mathbf{e}^T)\mathbf{v} vn=(1eeT)v
    e \mathbf{e} e: unit vector
  • L’s eigenvector λ e \lambda\mathbf{e} λe and eigenvalue λ \lambda λ
    d e t ( λ I − L ) = 0 det(\lambda I-L)=0 det(λIL)=0
    (characteristic equation)

3.2 rigid-body rotations

  • distance between u \mathbf{u} u and v \mathbf{v} v:
    d = ( u − v ) T ⋅ ( u − v ) d=\sqrt{(\mathbf{u}-\mathbf{v})^T\cdot(\mathbf{u}-\mathbf{v})} d=(uv)T(uv)
  • the volume V of the tetrahedron(四面体) defined by the origin and these points u , v , w \mathbf{u},\mathbf{v},\mathbf{w} u,v,w:
    V = 1 6 ∣ u × v ⋅ w ∣ = 1 6 ∣ d e t [ u   v   w ] ∣ V=\frac{1}{6}|\mathbf{u}\times\mathbf{v}\cdot\mathbf{w}|=\frac{1}{6}|det[\mathbf{u}\ \mathbf{v}\ \mathbf{w}]| V=61u×vw=61det[u v w]
  • Let Q be an isometry mapping the triad { u , v , w {\mathbf{u},\mathbf{v},\mathbf{w}} u,v,w} into { u ′ , v ′ , w ′ {\mathbf{u}^{\prime},\mathbf{v}^{\prime},\mathbf{w}^{\prime}} u,v,w}, the distance from the origin to the points vector u , v , w \mathbf{u},\mathbf{v},\mathbf{w} u,v,w is:
    ∣ ∣ u ∣ ∣ = u u T , ∣ ∣ v ∣ ∣ = v v T , ∣ ∣ w ∣ ∣ = w w T ||\mathbf{u}||=\sqrt{\mathbf{u}\mathbf{u}^T},||\mathbf{v}||=\sqrt{\mathbf{v}\mathbf{v}^T},||\mathbf{w}||=\sqrt{\mathbf{w}\mathbf{w}^T} ∣∣u∣∣=uuT ,∣∣v∣∣=vvT ,∣∣w∣∣=wwT
    Clearly:
    ∣ ∣ u ∣ ∣ = ∣ ∣ u ′ ∣ ∣ , ∣ ∣ v ∣ ∣ = ∣ ∣ v ′ ∣ ∣ , ∣ ∣ w ∣ ∣ = ∣ ∣ w ′ ∣ ∣ ||\mathbf{u}||=||\mathbf{u}^{\prime}||,||\mathbf{v}||=||\mathbf{v}^{\prime}||,||\mathbf{w}||=||\mathbf{w}^{\prime}|| ∣∣u∣∣=∣∣u∣∣,∣∣v∣∣=∣∣v∣∣,∣∣w∣∣=∣∣w∣∣
    d e t [ u ′ , v ′ , w ′ ] = ± d e t [ u , v , w ] det[\mathbf{u}^{\prime},\mathbf{v}^{\prime},\mathbf{w}^{\prime}]=\pm det[\mathbf{u},\mathbf{v},\mathbf{w}] det[u,v,w]=±det[u,v,w]
    case1: sign is preserved, the isometry is rotation
    case2: otherwise, isometry represents a reflection.
    Hence,distance preservation requires
    p T p = p ′ T p ′ \mathbf{p}^T\mathbf{p}=\mathbf{p}^{\prime T}\mathbf{p}^{\prime} pTp=pTp, where p ′ = Q p \mathbf{p}^{\prime}=Q\mathbf{p} p=Qp
    ⇒ Q T Q = I    ⇒   Q : orthogonal matrix \Rightarrow Q^TQ=I\ \ \Rightarrow\ Q:\text{orthogonal matrix} QTQ=I   Q:orthogonal matrix
    let T = [ u   v   w ] ,   T ′ = [ u ′   v ′   w ′ ] T=[\mathbf{u}\ \mathbf{v}\ \mathbf{w}],\ T^\prime =[\mathbf{u}^\prime \ \mathbf{v}^\prime \ \mathbf{w}^\prime] T=[u v w], T=[u v w]
    we have T ′ = Q T T^\prime = QT T=QT, for a rigid-body matrix:
    d e t ( T ) = d e t ( T ′ )   ⇒   d e t ( Q ) = ± 1 ,  proper othogonal matrix det(T)=det(T^\prime)\ \Rightarrow \ det(Q)=\pm1,\text{ proper othogonal matrix} det(T)=det(T)  det(Q)=±1, proper othogonal matrix
  • the cross-product matrix(矩阵叉乘):
    V = [ v 1 v 2 v 3 ] V=\left[\begin{matrix}v_1\\v_2\\v_3\end{matrix}\right] V= v1v2v3 , x = [ x 1 x 2 x 3 ] \mathbf{x}=\left[\begin{matrix}x_1\\x_2\\x_3\end{matrix}\right] x= x1x2x3
    V × x = [ v 2 x 3 − v 3 x 2 v 3 x 1 − v 1 x 3 v 1 x 2 − v 2 x 1 ] V\times \mathbf{x}=\left[\begin{matrix}v_2x_3-v_3x_2\\v_3x_1-v_1x_3\\v_1x_2-v_2x_1\end{matrix}\right] V×x= v2x3v3x2v3x1v1x3v1x2v2x1
    ∂ ( V × x ) ∂ x = [ ∂ ( V × x ) ∂ x 1   ∂ ( V × x ) ∂ x 2   ∂ ( V × x ) ∂ x 3 ] = [ 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ] \frac{\partial(V\times\mathbf{x})}{\partial\mathbf{x}}=[\frac{\partial(V\times\mathbf{x})}{\partial\mathbf{x}_1}\ \frac{\partial(V\times\mathbf{x})}{\partial\mathbf{x}_2}\ \frac{\partial(V\times\mathbf{x})}{\partial\mathbf{x}_3}]=\left[\begin{matrix}0&-v_3&v_2\\v_3&0&-v_1\\-v_2&v_1&0\end{matrix}\right] x(V×x)=[x1(V×x) x2(V×x) x3(V×x)]= 0v3v2v30v1v2v10
    given any 3-D vector a \mathbf{a} a, then its cross-product matrix A \mathbf{A} A is skew-symmetric matrix A T = − A A^T=-A AT=A
  • rotation matrix Q \mathbf{Q} Q:
    1. Q = e e T + cos ⁡ ϕ ( 1 − e e T ) + sin ⁡ ϕ E Q=\mathbf{e}\mathbf{e}^T+\cos\phi(\mathbf{1}-\mathbf{e}\mathbf{e}^T)+\sin\phi E Q=eeT+cosϕ(1eeT)+sinϕE
      [ E ] = 1 × e = [ 0 − e 3 e 2 e 3 0 − e 1 − e 2 e 1 0 ] [E]=\mathbf{1}\times\mathbf{e}=\left[\begin{matrix}0&-e_3&e_2\\e_3&0&-e_1\\-e_2&e_1&0\end{matrix}\right] [E]=1×e= 0e3e2e30e1e2e10

    2. an alternative representation Q could be:
      Q = 1 + sin ⁡ ϕ E + ( 1 − cos ⁡ ϕ ) E 2 Q=1+\sin\phi E+(1-\cos\phi)E^2 Q=1+sinϕE+(1cosϕ)E2

    3. the canonical form of the rotation matrix:
      [ Q ] x = [ 1 0 0 0 cos ⁡ ϕ − sin ⁡ ϕ 0 sin ⁡ ϕ cos ⁡ ϕ ] [Q]_x=\left[\begin{matrix}1&0&0\\0&\cos\phi&-\sin\phi\\0&\sin\phi&\cos\phi\end{matrix}\right] [Q]x= 1000cosϕsinϕ0sinϕcosϕ , [ Q ] y = [ cos ⁡ ϕ 0 sin ⁡ ϕ 0 1 0 − sin ⁡ ϕ 0 cos ⁡ ϕ ] [Q]_y=\left[\begin{matrix}\cos\phi&0&\sin\phi\\0&1&0\\-\sin\phi&0&\cos\phi\end{matrix}\right] [Q]y= cosϕ0sinϕ010sinϕ0cosϕ

      [ Q ] z = [ cos ⁡ ϕ − sin ⁡ ϕ 0 sin ⁡ ϕ cos ⁡ ϕ 0 0 0 1 ] [Q]_z=\left[\begin{matrix}\cos\phi&-\sin\phi&0\\\sin\phi&\cos\phi&0\\0&0&1\end{matrix}\right] [Q]z= cosϕsinϕ0sinϕcosϕ0001

  • the linear invariant of a rotation(已知旋转矩阵求 e \mathbf{e} e ϕ \phi ϕ):
    1. q = V e r t ( Q ) = V e r t ( sin ⁡ ϕ E ) = sin ⁡ ϕ e \mathbf{q}=Vert(Q)=Vert(\sin\phi\mathbf{E})=\sin\phi\mathbf{e} q=Vert(Q)=Vert(sinϕE)=sinϕe
    2. t r ( Q ) = 1 + 2 cos ⁡ ϕ tr(Q)=1+2\cos\phi tr(Q)=1+2cosϕ
    3. sin ⁡ ϕ = ± ∣ ∣ q ∣ ∣ \sin\phi=\pm||\mathbf{q}|| sinϕ=±∣∣q∣∣
    4. e = q sin ⁡ ϕ \mathbf{e}=\frac{\mathbf{q}}{\sin\phi} e=sinϕq
    5. cos ⁡ ϕ = t r ( Q ) − 1 2 = q 0 \cos\phi=\frac{tr(Q)-1}{2}=q_0 cosϕ=2tr(Q)1=q0
    6. Q = q q T ∣ ∣ q ∣ ∣ 2 + q 0 ( 1 − q q T ∣ ∣ q ∣ ∣ 2 ) + Q ‾ Q=\frac{\mathbf{q}\mathbf{q}^T}{||\mathbf{q}||^2}+q_0(1-\frac{\mathbf{q}\mathbf{q}^T}{||\mathbf{q}||^2})+\overline{Q} Q=∣∣q2qqT+q0(1∣∣q2qqT)+Q
  • properties of 3 linear transformation matrix :
    1. orthogonal:
      1. idempotent matrix
      2. singular: d e t ( Q ) = 0 det(Q)=0 det(Q)=0
      3. symmetric matrix
    2. rotation:
      1. Q Q T = 1 QQ^T=1 QQT=1
      2. d e t ( Q ) = 1 det(Q)=1 det(Q)=1
    3. reflection:
      1. symmetric matrix
      2. t r ( Q ) ≠ − 1 , 3 tr(Q)\neq-1,3 tr(Q)=1,3
      3. Q Q T = 1 QQ^T=1 QQT=1
      4. d e t ( Q ) = − 1 det(Q)=-1 det(Q)=1

Lecture4 Fundamentals of Rigid-Body Mechanics

angular velcity matrix of rigid-body motion

p ( t ) = Q ( t ) ⋅ p o ⇒ p ˙ ( t ) = Q ˙ ( t ) p o    a n d    p o = Q T ( t ) p ( t ) \mathbf{p}(t)=Q(t)\cdot \mathbf{p}_o \Rightarrow \dot{ \mathbf{p}}(t)=\dot{Q}(t) \mathbf{p}_o \ \ and\ \ \mathbf{p}_o=Q^T(t) \mathbf{p}(t) p(t)=Q(t)pop˙(t)=Q˙(t)po  and  po=QT(t)p(t)
so that, p ˙ ( t ) = Q ˙ Q T p \dot{ \mathbf{p}}(t)=\dot{ Q}Q^T \mathbf{p} p˙(t)=Q˙QTp
let :
Ω = Q ˙ Q T \Omega=\dot{ Q}Q^T Ω=Q˙QT
where ω = [ ω x ω y ω z ] \omega =\left[\begin{matrix} \mathbf{\omega}_x \\ \mathbf{\omega}_y \\ \mathbf{\omega}_z \end{matrix} \right] ω= ωxωyωz and Ω = 1 × ω \Omega=1\times\omega Ω=1×ω

general instantaneous motion of a rigid-body

  • position :
    p ( t ) = a ( t ) + Q ( t ) ( p − a ) \mathbf{p}(t) = \mathbf{a}(t) + Q(t)(\mathbf{p}-\mathbf{a} ) p(t)=a(t)+Q(t)(pa)
  • velcity :
    p ˙ = a ˙ + Ω ( p − a ) \dot{\mathbf{p}}=\dot{\mathbf{a}}+\Omega (\mathbf{p}-\mathbf{a} ) p˙=a˙+Ω(pa)
    Subsequently, ( p ˙ − a ˙ ) ( p − a ) = 0 (\dot{\mathbf{p}}-\dot{\mathbf{a}})(\mathbf{p}-\mathbf{a} )=0 (p˙a˙)(pa)=0

it indicates the relative velocity of two point of the same rigid body is perpendicular(垂直) to the line joining them.

hence, the instantaneous motion of a body is equivalent to that of bolt of a screw of axis L’,called Instantaneous Screw Axis(ISA)(旋转轴)

As the ISA changes, the motion of the body is called an instantaneous screw
v 0 = v 0 ω ∣ ∣ ω ∣ ∣ \mathbf{v}_0=v_0\frac{\mathbf{\omega}}{||\mathbf{\omega}||} v0=v0∣∣ω∣∣ω, ω \omega ω called amplitude
p’: pitch of the instantaneous screw
p ′ = v 0 ∣ ∣ ω ∣ ∣    m / r a d p'=\frac{v_0}{||\mathbf{\omega} ||} \ \ m/rad p=∣∣ω∣∣v0  m/rad

to determine the set of the points of the plate that undergo a velocity of minimum magnitude:
p o ′ = 1 ∣ ∣ ω ∣ ∣ Ω C ˙ p^{'}_o=\frac{1}{||\omega||}\Omega \dot{C} po=∣∣ω∣∣1ΩC˙

* ISA L’ can be specified uniquely through its Pl u ¨ \ddot{u} u¨cker(普吕克) array p L \mathbf{p}_L pL:

p L ′ = [ e ′ n ′ ] \mathbf{p}'_L=\left[\begin{matrix} \mathbf{e}' \\ \mathbf{n}' \end{matrix} \right] pL=[en]
where e ′ \mathbf{e}' e: direction of L’ and n ′ \mathbf{n}' n : moment about origin
and n ′ = p ′ × e ′ \mathbf{n}'=\mathbf{p}' \times \mathbf{e}' n=p×e
e ′ = ω ∣ ∣ ω ∣ ∣ \mathbf{e}'=\frac{\mathbf{\omega}}{||\mathbf{\omega} ||} e=∣∣ω∣∣ω

Twist-transfer Formula

it relates the twist of the same rigid body at two different point
t A = [ ω v A ] \mathbf{t}_A=\left[\begin{matrix} \mathbf{\omega} \\ \mathbf{v}_A \end{matrix} \right] tA=[ωvA] and t A = [ ω v A ] \mathbf{t}_A=\left[ \begin{matrix}\mathbf{\omega}\\ \mathbf{v}_A \end{matrix} \right] tA=[ωvA] t \mathbf{t} t: instantaneous velocity
v P = v A + ( a − p ) × ω \mathbf{v}_P=\mathbf{v}_A+(\mathbf{a}-\mathbf{p} )\times \mathbf{\omega} vP=vA+(ap)×ω
so, t P = U t A \mathbf{t}_P=U\mathbf{t}_A tP=UtA , where U = [ I 0 A − P I ] U=\left[\begin{matrix} I&\mathbf{0}\\A-P&I\end{matrix} \right] U=[IAP0I]

computation of the twist parameter

* centriod c = 1 3 ∑ i = 1 3 p i c=\frac{1}{3}\sum^{3}_{i=1}p_i c=31i=13pi likewise : c ˙ = 1 3 ∑ i = 1 3 p ˙ i \dot{c}=\frac{1}{3}\sum^{3}_{i=1}\dot{p}_i c˙=31i=13p˙i
P = [ p 1 − c ,   p 2 − c ,   p 3 − c ] \mathbf{P} =[p_1-c, \ p_2-c,\ p_3-c] P=[p1c, p2c, p3c]
P ˙ = [ p ˙ 1 − c ˙ ,   p ˙ 2 − c ˙ ,   p ˙ 3 − c ˙ ] \dot{\mathbf{P}} =[\dot{p}_1-\dot{c}, \ \dot{p}_2-\dot{c}, \ \dot{p}_3-\dot{c} ] P˙=[p˙1c˙, p˙2c˙, p˙3c˙]
P ˙ = Ω P \dot{\mathbf{P}} =\Omega\mathbf{P} P˙=ΩP

D ⋅ v e c t ( Ω ) = v e c t ( P ˙ ) D\cdot vect(\Omega)=vect(\dot{\mathbf{P}}) Dvect(Ω)=vect(P˙), where D = 1 2 [ t r ( P ) I − P ] D=\frac{1}{2}[tr(P)I-P] D=21[tr(P)IP]
we can use the equation to find angle velocity ω \omega ω:

  1. find D: D = 1 2 [ t r ( P ) I − P ] D=\frac{1}{2}[tr(P)I-P] D=21[tr(P)IP]
  2. find: v e r t ( P ˙ ) vert(\dot{P}) vert(P˙)
  3. use: D ⋅ v e c t ( Ω ) = v e c t ( P ˙ ) D\cdot vect(\Omega)=vect(\dot{\mathbf{P}}) Dvect(Ω)=vect(P˙) and compare both side ,then find ω \omega ω

compatibility conditions of velocity
method1: check all points use ( p ˙ − a ˙ ) ( p − a ) = 0 (\dot{\mathbf{p}}-\dot{\mathbf{a}})(\mathbf{p}-\mathbf{a} )=0 (p˙a˙)(pa)=0
method2:

  • position
    P T P = C P^TP=C PTP=C
  • velocity
    P ˙ T P + P T P ˙ = 0 \dot{P}^TP+P^T\dot{P}=0 P˙TP+PTP˙=0
    i.e. P ˙ T P \dot{P}^TP P˙TP is skew-symmetric matrix

compatibility conditions of accelerations:
∵ p ¨ = a ¨ + Ω ˙ ( p − a ) + Ω ( p ˙ − a ˙ ) \because \ddot{\mathbf{p}}=\ddot{\mathbf{a}}+\dot{\Omega}(\mathbf{p}-\mathbf{a})+\Omega(\dot{\mathbf{p}}-\dot{\mathbf{a}}) p¨=a¨+Ω˙(pa)+Ω(p˙a˙)
∴ p ¨ = a ¨ + ( Ω ˙ + Ω 2 ) ( p − a ) \therefore \ddot{\mathbf{p}}=\ddot{\mathbf{a}}+(\dot{\Omega}+\Omega^2)(\mathbf{p}-\mathbf{a}) p¨=a¨+(Ω˙+Ω2)(pa)
angular-acceleration matrix:
W = Ω ˙ + Ω 2 W=\dot{\Omega}+\Omega^2 W=Ω˙+Ω2
v e c t ( W ) = v e c t ( Ω ˙ ) = ω ˙ vect(W)=vect(\dot{\Omega})=\dot{\omega} vect(W)=vect(Ω˙)=ω˙
t r ( W ) = t r ( Ω 2 ) = − 2 ∣ ∣ ω ∣ ∣ 2 tr(W)=tr(\Omega^2)=-2||\omega||^2 tr(W)=tr(Ω2)=2∣∣ω2
t ˙ = [ ω ˙ v ˙ ] \dot{t}=\left[\begin{matrix} \dot{\mathbf{\omega}}\\\dot{\mathbf{v}} \end{matrix} \right] t˙=[ω˙v˙]

computation of angular-acceleration from piont-acceleration:
c ¨ = 1 3 ∑ i = 1 3 p i ¨ \ddot{\mathbf{c}}=\frac{1}{3}\sum^3_{i=1}\ddot{\mathbf{p_i}} c¨=31i=13pi¨
P ¨ = [ p 1 ¨ − c ¨ p 2 ¨ − c ¨ p 3 ¨ − c ¨ ] \ddot{P}=\left[\begin{matrix} \ddot{\mathbf{p}_1}-\ddot{\mathbf{c}} & \ddot{\mathbf{p}_2}-\ddot{\mathbf{c}}&\ddot{\mathbf{p}_3}-\ddot{\mathbf{c}} \end{matrix}\right] P¨=[p1¨c¨p2¨c¨p3¨c¨]
p ¨ = ( Ω ˙ + Ω 2 ) P \ddot{\mathbf{p}}=(\dot{\Omega}+\Omega^2)P p¨=(Ω˙+Ω2)P
D ( ˙ ω ) = v e c t ( P ¨ − ∣ O m e g a 2 P ) D\dot(\mathbf{\omega})=vect(\ddot{P}-|Omega^2P) D(˙ω)=vect(P¨Omega2P)

verify the angle acceleration compatible

Lecture5 Kinematics and Statics of Robotic Mechanical Systems

basic definitions

  1. kinematic chain: llinks + kinematic pairs
    1. upper kinematic pairs: point,line contact.
    2. lower kinematic pairs: surface contact
  2. type of lower kinematic pairs
    1. R: rotating pair, or revolute joints
    2. P: sliding pair, or prismatic joints
  3. first links: manipulator base
  4. last links: end effector(EE)

Denavit-Hartenberg table

DH parameters

  1. z i z_i zi: ith axis
  2. x i x_i xi: is defined as the common perpendicular to z i − 1 z_{i-1} zi1 and z i z_i zi from z i − 1 z_{i-1} zi1 to z i z_i zi.
  3. y i y_i yi: y = z × x \mathbf{y}=\mathbf{z}\times \mathbf{x} y=z×x, right hand rule
  4. a i a_i ai: distance between z i z_i zi and z i + 1 z_{i+1} zi+1
  5. b i b_i bi: intersection of x i + 1 x_{i+1} xi+1 and z i z_i zi , O’ in z i z_i zi
  6. α i \alpha_i αi: the angle of z i z_i zi and z i + 1 z_{i+1} zi+1 (from z i z_i zi to z i + 1 z_{i+1} zi+1 along x i + 1 x_{i+1} xi+1)
  7. θ i \theta_i θi: the angle of x i x_i xi to x i + 1 x_{i+1} xi+1 , (from x i x_i xi to x i + 1 x_{i+1} xi+1 , along z i z_i zi)
  8. x 1 x_1 x1: position arbitrary, fixed and parallel to floor
  9. link from o to n, frame from 1 to n+1

[ Q i ] i = [ cos ⁡ θ i − cos ⁡ α i sin ⁡ θ i sin ⁡ α i sin ⁡ θ i sin ⁡ θ i cos ⁡ α i cos ⁡ θ i − sin ⁡ α i cos ⁡ θ i 0 sin ⁡ α i cos ⁡ α i ] [Q_i]_i=\left[\begin{matrix} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & - \sin\alpha_i \cos\theta_i \\ 0& \sin\alpha_i & \cos\alpha_i \end{matrix} \right] [Qi]i= cosθisinθi0cosαisinθicosαicosθisinαisinαisinθisinαicosθicosαi
[ a i ] i = [ a i cos ⁡ θ i a i sin ⁡ θ i b i ]      [ b i ] i = [ a i b i sin ⁡ α i b i cos ⁡ α i ] [a_i]_i= \left[ \begin{matrix} a_i \cos\theta_i \\ a_i \sin\theta_i \\ b_i \end{matrix} \right]\ \ \ \ [b_i]_i = \left[ \begin{matrix} a_i \\ b_i \sin\alpha_i \\ b_i \cos\alpha_i \end{matrix} \right] [ai]i= aicosθiaisinθibi     [bi]i= aibisinαibicosαi
a i = Q i b i a_i = Q_ib_i ai=Qibi

general IKP for six_revolute manipulator

  • the EE position and orientation:
    • orientation :
      Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 = Q Q_1Q_2Q_3Q_4Q_5Q_6=Q Q1Q2Q3Q4Q5Q6=Q
    • position:
      P = a 1 + Q 1 a 2 + Q 1 Q 2 a 3 + Q 1 Q 2 Q 3 a 4 + Q 1 Q 2 Q 3 Q 4 a 5 + Q 1 Q 2 Q 3 Q 4 Q 5 a 6 P=a_1+Q_1a_2+Q_1Q_2a_3+Q_1Q_2Q_3a_4+Q_1Q_2Q_3Q_4a_5+Q_1Q_2Q_3Q_4Q_5a_6 P=a1+Q1a2+Q1Q2a3+Q1Q2Q3a4+Q1Q2Q3Q4a5+Q1Q2Q3Q4Q5a6

Lecture6 Innovative Design and Application

6.1 parallel manipulators

  1. types of manipulators
    m a n i p u l a t o r { S e r i a l   M a i n p u l a t o r P a r a l l e l   M a n i p u l a t o r manipulator \begin{cases} Serial\ Mainpulator\\[2ex] Parallel\ Manipulator \end{cases} manipulator Serial MainpulatorParallel Manipulator
  2. basic concepts and definitions
    • Parallel mechanism: close-loop mechanism, mobile platform is connected to the base by at last two independent kinematic chains
    • Similar terms: closed-loop mechanism, parallel robot, parallel manipulator
    • Antonyms: open-loop mechanism, serial manipulator, serial robot
    • Parallel Kinematic Machine(PKM): machine tool based on a parallel mechanism.
  3. advantages and disadvantages of PKM
    • advantages
      • high rigidity(刚度) and stiffness(强度)
      • high speed
      • high accuracy
      • high flexibility
    • disadvantages
      • small workspace and cutting volume
      • difficulty to design
      • coupled control system

6.2 innovation design(parallezation of serial robots)

synthesis starting from the actuating structure

synthesis of parallel links based on DOF constaints

requirements on parallel actuated arms

6.3 reconfigurable robotic manipulators

6.4 modular flexure joints for compliant mechanisms

PZT(压电陶瓷) actuator

6.5applications

Lecture7

  • 25
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值