数论笔记:
一、整除理论:
-
整除:
定义:若对任意的整数a和b,a≠0, 若存在整数c使得 b = ac,则称a整除b,记作 a ∣ b a | b a∣b
性质:
* 若 a | b, 则 a | bc
* 若 a | b, 且 b | c, 则 a | c
* 若 a | b, 且 a | c, 则 a | xb+yc (x,y均为整数)
-
带余除法:
令a为整数,d为正整数,则存在唯一的整数q和r,且 0 ≤ r < d 0 \leq r < d 0≤r<d, 满足:a = dq + r, 则称d为除数,a为被除数,q为商,r为余数, 记作 q = a div d, r = a mod d
-
模m加/乘:
1)模m加: a ± n b = ( a ± b ) m o d n = ( ( a m o d n ) ± ( b m o d n ) ) m o d n a \pm_n b = (a\pm b)\mod{n} = ((a\mod{n})\pm(b\mod{n}))\mod{n} a±nb=(a±b)modn=((amodn)±(bmodn))modn
2)模m乘: a ∗ n b = ( a ∗ b ) m o d n = ( ( a m o d n ) ∗ ( b m o d n ) ) m o d n = ( ( a m o d n ) ∗ b ) m o d n a *_n b = (a * b)\mod{n}=((a\mod{n})*(b\mod{n}))\mod{n}=((a\mod{n})*b)\mod{n} a∗nb=(a∗b)modn=((amodn)∗(bmodn))modn=((amodn)∗b)modn
二、素数理论:
-
算术基本定理:
每个大于1的正整数都可以唯一地写成一个素数或者若干个素数的乘积,其中素数因子以非递减序出现,即形如: n = p 1 α 1 p 2 α 2 . . . p k α k n = p_1^{\alpha_1} p_2^{\alpha_2}... p_k^{\alpha_k} n=p1α1p2α2...pkαk
三、同余方程:
-
费马小定理:
设正整数a不是素数p的倍数,则:
1) a p ≡ a a^p \equiv a ap≡a(mod p);
2) a p − 1 ≡ 1 a^{p-1} \equiv 1 ap−1≡1(mod p);
-
欧拉函数:
定义:若n为正整数,则称欧拉函数 ϕ ( n ) \phi(n) ϕ(n)为比n小且与n互素的正整数个数;
性质:
1) ϕ ( p ) = p − 1 , p 是 素 数 \phi(p) = p-1, p 是素数 ϕ(p)=p−1,p是素数
2) ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn) = \phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)
3) ϕ ( n ) = n ∗ Π p ∣ n ( 1 − 1 p ) \phi(n) = n * \Pi_{p | n}(1 - \frac{1}{p}) ϕ(n)=n∗Πp∣n(1−p1)