ICML 20 workshop GRACE : Deep Graph Contrastive Representation Learning

talk

本文提出两种增强视图的方法,形成不同视图,进行不同视图节点间的对比,不获取图级表征,节点间的 类似 moco,infonce损失

1. model

在这里插入图片描述

2. 损失

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. 视图增强的两种 随即掩码边和节点特征

在这里插入图片描述

优势 : 损失和 MI的关系 损失和 triplet loss的关系

4.1 首先 说明 本文的 损失 是infonce损失的 下界

在这里插入图片描述
文献23 CPC 证明 infonce 损失 是 MI的下界
在这里插入图片描述
在这里插入图片描述
因此,本文的损失就等价于 最小化 节点 特征和所学表征 之间的 互信息。

本文说出 26 这篇文章 有个 反直觉的发现,严格优化 MI的边界,不会有更好的效果
在这里插入图片描述
在这里插入图片描述

4.2 和triplet loss的 联系

当g 非线性映射头是恒等方程, 这里的损失 最小化节点对 等价于 最大化 triplet 损失
在这里插入图片描述
本文说 这里自己的损失 计算简单,triplet 损失计算昂贵 下面引文是 triplet 损失
在这里插入图片描述

缺点

在这里插入图片描述
这里的实验 是明明 有问题的 cora看起来还行, citeseer也还行, 但是 这个pubmed 的 结果是不可能的。 github issue里面有人指出,这里采用了10%训练 10%验证 80%测试。 但是 如果是这样,一般代码数据集处理部分是通用的,那么前面两个 也可能存在问题,,,, 那其实结果 并非可以复现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值