talk
本文提出两种增强视图的方法,形成不同视图,进行不同视图节点间的对比,不获取图级表征,节点间的 类似 moco,infonce损失
1. model
2. 损失
3. 视图增强的两种 随即掩码边和节点特征
优势 : 损失和 MI的关系 损失和 triplet loss的关系
4.1 首先 说明 本文的 损失 是infonce损失的 下界
文献23 CPC 证明 infonce 损失 是 MI的下界
因此,本文的损失就等价于 最小化 节点 特征和所学表征 之间的 互信息。
本文说出 26 这篇文章 有个 反直觉的发现,严格优化 MI的边界,不会有更好的效果
4.2 和triplet loss的 联系
当g 非线性映射头是恒等方程, 这里的损失 最小化节点对 等价于 最大化 triplet 损失
本文说 这里自己的损失 计算简单,triplet 损失计算昂贵 下面引文是 triplet 损失
缺点
这里的实验 是明明 有问题的 cora看起来还行, citeseer也还行, 但是 这个pubmed 的 结果是不可能的。 github issue里面有人指出,这里采用了10%训练 10%验证 80%测试。 但是 如果是这样,一般代码数据集处理部分是通用的,那么前面两个 也可能存在问题,,,, 那其实结果 并非可以复现。