配对多模态单细胞分析可在同一细胞中分析多模态特征,用于识别染色质和 mRNA 模态互补的细胞状态以及将调控元件与靶基因联系起来。然而,与单模态分析相比,输入特征的高维度和较浅的测序深度给数据分析带来了挑战。在这里,作者介绍了 scPair,这是一个多模态框架,并采用隐式特征选择。scPair 使用配对数据进行训练,双编码器-解码器结构可以跨模态对齐细胞状态并预测从一种模态到另一种模态的特征。作者证明 scPair 在准确性和执行时间方面优于现有方法,并促进了轨迹推断等下游任务。进一步实验表明 scPair 还可以用更大的单模态图谱来增强较小的多模态数据集,以提高统计能力。
来自:scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases, Nature Communications, 2024
背景概述
单细胞分析已经开发出来用于捕获基因组调控的各个方面,包括基因表达、染色质可及性和甲基化等。目前捕获单一数据类型的单模态分析已广泛应用于各种组织和物种,以对细胞类型进行分类,以及识别在发育轨迹上特定步骤中激活的基因组特征,进一步推断基因相互作用、开放染色质区域或甲基化位点调控网络。总之,单细胞数据分析的一个常见步骤是细胞状态推断:推断单细胞数据模态的低维表示,随后用于二维数据可视化、聚类以识别离散细胞类型,利用embedding做轨迹推断。
最近,已经开发出可以分析来自同一细胞的两种或多种模态的多模态分析。包括不同的测量技术,例如,Paired-seq、SHARE-seq、SNARE-seq 和 10X-Multiome