概述
该工作来自于:Recipe for a General, Powerful, Scalable Graph Transformer,Nips2022,名为GPS。Graph Transformer (GTs)已经在图表示学习领域取得了很多成果,GPS作为图表示学习的系统性方法,是一个模块化的框架,支持多种类型的编码方式,并且适用于不同规模的Graph。
GPS包含两个模块:
- embedding模块:用于将位置编码PE,结构编码SE,节点node,边edge,图graph的特征进行有效融合;
- processing模块:用于将局部消息传递(local message passing)和全局注意力机制(global attention)结合。
PE和SE
位置编码(PE)旨在提供图中给定节点在空间中的位置概念。因此,当一个图或子图中的两个节点彼此接近时,它们的PE也应该接近。
结构编码(SE)旨在提供图或子图的结构嵌入,以帮助提高图神经网络(GNN)的表达性和泛化性。因此,当两个节点共享相似的子图时,或者当两个图相似时,它们的SE也应该接近。
目前的研究工作中存在多种PE、SE方案,他们基本都可以归纳到local、global、relative三种类别。

- 表1:展示了位置编码(PE)和结构编码(SE)的分类。
为什么需要PE和SE
MPNN和1-Weisfeiler-Leman test(1-WL)具有相同的性质:通过一次迭代无法确定两个图是否同构,而加入PE和SE后,MPNN会相比1-WL具有更强的表现力。
1-WL test是图同构Weisfeiler-Leman (WL)中的一种节点着色算法,它基于节点的1跳局部邻域迭代更新节点的颜色,直到节点颜色不再变化。节点颜色的最终直方图决定了算法输出的两个图是“非同构”(当两个图的直方图不同时)还是“可能同构”(当两个图的直方图相同时)。虽然它不是图同构问题的充分检验,但启发式方法应用简单,最近在文献中被广泛用于量化MPNN的表达能力。

- 第一行:具有匿名节点的示例图,即节点没有任何可区分的节点特征。
- a:一对圆跳链(Circular Skip Link, CSL)图,节点的跳链分别为2和3。
- b:十氢化萘分子图,它有两个全碳原子环,因此没有明显的节点特征。
- 第二行:用1-WL生成的特征着色的节点。
- 第三行:用全局PE生成的特征着色的节点。
- 第四行:用局部SE生成的特征着色的节点。
- 注意:图中节点上的颜色表示从相应的PE/SE为给定图生成的唯一特征向量。
整体架构
GraphGPS更类似于一个工程项目:

可以发现,除了模块化的PE和SE以及Graph特征,GraphGPS的主要特点在于:MPNN用于更新节点和边的特征,Transformer用于更新节点特征,然后将MPNN和Transformer的节点特征相加得到新的节点特征。
435

被折叠的 条评论
为什么被折叠?



