概述
该工作来自于:Recipe for a General, Powerful, Scalable Graph Transformer,Nips2022,名为GPS。Graph Transformer (GTs)已经在图表示学习领域取得了很多成果,GPS作为图表示学习的系统性方法,是一个模块化的框架,支持多种类型的编码方式,并且适用于不同规模的Graph。
GPS包含两个模块:
- embedding模块:用于将位置编码PE,结构编码SE,节点node,边edge,图graph的特征进行有效融合;
- processing模块:用于将局部消息传递(local message passing)和全局注意力机制(global attention)结合。
PE和SE
位置编码(PE)旨在提供图中给定节点在空间中的位置概念。因此,当一个图或子图中的两个节点彼此接近时,它们的PE也应该接近。
结构编码(SE)旨在提供图或子图的结构嵌入,以帮助提高图神经网络(GNN)的表达性和泛化性。因此,当两个节点共享相似的子图时,或者当两个图相似时,它们的SE也应该接近。
目前的研究工作中存在多种PE、SE方案,他们基本都可以归纳到local、global、relative三种类别。
- 表1:展示了位置编码(PE)和结构编码(SE)的分类。