集成学习-基础数学模型回归

参考链接
作业详情链接
参考学习的教案链接

1、最小二乘法的表达式:
假设研究的问题有n个样本。
X = ( x 1 , x 2 , . . . , x n ) T X=(x_1,x_2,...,x_n)^T X=(x1,x2,...,xn)T
Y = ( y 1 , y 2 , . . . , y n ) T Y=(y_1,y_2,...,y_n)^T Y=(y1,y2,...,yn)T
L ( W ) = 1 2 ( X W − Y ) T ( X W − Y ) L(W)=\frac{1}{2}(XW-Y)^T(XW-Y) L(W)=21(XWY)T(XWY)

2、极大似然估计和最小二乘法的关系?
个人认为,两者本质上是同一个问题,极大似然估计是针对概率密度函数 P ( Y ∣ X , W ) P(Y|X,W) P(YX,W)寻找到使得P最大的W,也就是最优的W。同理,最小二乘法是找到使得L(W)最小的W,也就是最优的W.
只不过二者的出发点不同,极大似然估计是从概率的角度出发,求解的也是已知的概率密度函数,而最小二乘法是优化的L(W)。
如果假设这个概率密度模型是 N ∼ ( μ , σ 2 ) N\sim (\mu,\sigma^2) N(μ,σ2),那么根据正态分布的密度函数可以类比写出: 1 2 π σ e x p ( − ( Y − X W − 0 ) 2 2 σ 2 ) → 1 2 π σ e x p ( − ( Y − μ ) 2 2 σ 2 ) , 其 中 假 设 μ = X W \frac{1}{\sqrt{2\pi \sigma}}exp(-\frac{(Y-XW-0)^2}{2\sigma^2})\to \frac{1}{\sqrt{2\pi \sigma}}exp(-\frac{(Y-\mu)^2}{2\sigma^2}),其中假设\mu = XW 2πσ 1exp(2σ2(YXW0)2)2πσ 1exp(2σ2(Yμ)2),μ=XW.
根据正态分布的性质可得: μ \mu μ越接近 Y Y Y ( Y − W X ) 2 (Y-WX)^2 (YWX)2值越小,则概率值越大,也就是求解 μ \mu μ的极大似然估计。

3、为什么多项式回归在实际问题中表现不好?
多项式回归容易受到异常值的影响,在数据密度较少的区域会产生很大的波动。

4、什么是KKT条件?

Karush-Kuhn-Tucker (KKT)条件是非线性规划(nonlinear programming)最佳解的必要条件。也就是最优解 x ∗ x^* x必满足KKT条件,但是满足KKT条件的点未必是最优解。
证明:
针对这样的一个不等式约束问题:
min ⁡ f ( x ) s . t . g i ( x ) ≤ 0 , i = 1 , 2 , . . . , m h j ( x ) = 0 , j = 1 , 2 , . . . , l \min f(x)\\ s.t. g_i(x)\leq 0,i=1,2,...,m\\ h_j(x) = 0,j=1,2,...,l minf(x)s.t.gi(x)0,i=1,2,...,mhj(x)=0,j=1,2,...,l
假设 x ∗ x* x是最优解。同时定义可行域 K = x ∣ g i ( x ) ≤ 0 , i = 1 , 2 , . . . , m , h j ( x ) = 0 , j = 1 , 2 , . . . , l K={x| g_i(x)\leq 0,i=1,2,...,m,h_j(x) = 0,j=1,2,...,l} K=xgi(x)0,i=1,2,...,m,hj(x)=0,j=1,2,...,l

  • 如果 x ∗ x^* x在可行域内,那么该优化问题就退化为无约束优化问题。则 ∇ f ( x ∗ ) = 0 \nabla f(x^*) =0 f(x)=0.
  • 如果 x ∗ x^* x在可行域边界上,则梯度 ∇ f ( x ) \nabla f(x) f(x)是指向可行域内部的,而 ∇ g ( x ) \nabla g(x) g(x)是指向可行域外部(这是因为 g i ( x ) ≤ 0 g_i(x)\leq 0 gi(x)0)。
    所以可以写出 ∇ f ( x ) = ∑ i λ i ∇ g i ( x ) \nabla f(x) = \sum_i \lambda_i \nabla g_i(x) f(x)=iλigi(x).
    根据拉格朗日乘子法:
    L ( x , λ , μ ) = f ( x ) + ∑ i λ i g i ( x ) + ∑ j μ j h j ( x ) L(x,\lambda,\mu) =f(x) + \sum_i \lambda_i g_i(x) + \sum_j\mu_j h_j(x) L(x,λ,μ)=f(x)+iλigi(x)+jμjhj(x)
    所以可以写出最优化问题的KKT条件:
    ∇ x L = 0 ( 对 偶 条 件 ) h j ( x ) = 0 , j = 1 , 2 , . . . , l g i ( x ) ≤ 0 , i = 1 , 2 , . . . , m λ i ≥ 0 , i = 1 , 2 , . . . , m ( 对 偶 条 件 ) λ i g i ( x ) = 0 , i = 1 , 2 , . . . , m ( 互 补 松 弛 定 理 ) \nabla_x L = 0 (对偶条件)\\ h_j(x) = 0,j=1,2,...,l\\ g_i(x) \leq 0,i=1,2,...,m\\ \lambda_i \geq 0,i=1,2,...,m(对偶条件)\\ \lambda_i g_i(x) =0,i=1,2,...,m (互补松弛定理) xL=0hj(x)=0,j=1,2,...,lgi(x)0,i=1,2,...,mλi0,i=1,2,...,mλigi(x)=0,i=1,2,...,m

5、为什么引入原问题的偶问题?

  • 灵敏度分析
  • 根据弱对偶理论或者强对偶理论,帮助计算原问题。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值