集成学习-Boosting

Boosting主要思想是通过多个模型去学习同一个数据集,从而得到多个简单的弱分类器模型,最后将这些模型组成一个性能十分强大的机器学习模型。
Valiant 和Kearns提出“弱可学习”和“强可学习”的概念。同时,Schapire证明出,强可学习和弱可学习是等价的。也就是一个概念可强学习的充分必要条件是这个概念可弱学习。

  • 弱学习:识别错误率小于1/2(即准确率仅比随机猜测略高的学习算法)
  • 强学习:识别准确率很高并能在多项式时间内完成的学习算法

大多数的boosting算法通过改变训练集的概率分布或者权重,针对不同的数据分布调用不同的学习器。那么对于boosting方法来说,最重要的问题就是1、每一轮的学习如何改变数据 概率分布。2、如何将这些弱学习器组成一个强学习器。

AdaBoost

对于Adaboost来说,解决上述的两个问题的方式是:1. 提高那些被前一轮分类器错误分类的样本的权重,而降低那些被正确分类的样本的权重。这样一来,那些在上一轮分类器中没有得到正确分类的样本,由于其权重的增大而在后一轮的训练中“备受关注”。2. 各个弱分类器的组合是通过采取加权多数表决的方式,具体来说,加大分类错误率低的弱分类器的权重,因为这些分类器能更好地完成分类任务,而减小分类错误率较大的弱分类器的权重,使其在表决中起较小的作用。
现在,我们来具体介绍Adaboost算法:
假设给定一个二分类的训练数据集: T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)},其中每个样本点由特征与类别组成。特征 x i ∈ X ⊆ R n x_{i} \in \mathcal{X} \subseteq \mathbf{R}^{n} xiXRn,类别 y i ∈ Y = { − 1 , + 1 } y_{i} \in \mathcal{Y}=\{-1,+1\} yiY={1,+1} X \mathcal{X} X是特征空间,$ \mathcal{Y} 是 类 别 集 合 , 输 出 最 终 分 类 器 是类别集合,输出最终分类器 G(x) 。 A d a b o o s t 算 法 如 下 : ( 1 ) 初 始 化 训 练 数 据 的 分 布 : 。Adaboost算法如下: (1) 初始化训练数据的分布: Adaboost(1)D_{1}=\left(w_{11}, \cdots, w_{1 i}, \cdots, w_{1 N}\right), \quad w_{1 i}=\frac{1}{N}, \quad i=1,2, \cdots, N$
(2) 对于m=1,2,…,M

  • 使用具有权值分布 D m D_m Dm的训练数据集进行学习,得到基本分类器: G m ( x ) : X → { − 1 , + 1 } G_{m}(x): \mathcal{X} \rightarrow\{-1,+1\} Gm(x):X{1,+1}
  • 计算 G m ( x ) G_m(x) Gm(x)在训练集上的分类误差率 e m = ∑ i = 1 N P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i ) e_{m}=\sum_{i=1}^{N} P\left(G_{m}\left(x_{i}\right) \neq y_{i}\right)=\sum_{i=1}^{N} w_{m i} I\left(G_{m}\left(x_{i}\right) \neq y_{i}\right) em=i=1NP(Gm(xi)=yi)=i=1NwmiI(Gm(xi)=yi)
  • 计算 G m ( x ) G_m(x) Gm(x)的系数 α m = 1 2 log ⁡ 1 − e m e m \alpha_{m}=\frac{1}{2} \log \frac{1-e_{m}}{e_{m}} αm=21logem1em,这里的log是自然对数ln
  • 更新训练数据集的权重分布
    D m + 1 = ( w m + 1 , 1 , ⋯   , w m + 1 , i , ⋯   , w m + 1 , N ) w m + 1 , i = w m i Z m exp ⁡ ( − α m y i G m ( x i ) ) , i = 1 , 2 , ⋯   , N \begin{array}{c} D_{m+1}=\left(w_{m+1,1}, \cdots, w_{m+1, i}, \cdots, w_{m+1, N}\right) \\ w_{m+1, i}=\frac{w_{m i}}{Z_{m}} \exp \left(-\alpha_{m} y_{i} G_{m}\left(x_{i}\right)\right), \quad i=1,2, \cdots, N \end{array} Dm+1=(wm+1,1,,wm+1,i,,wm+1,N)wm+1,i=Zmwmiexp(αmyiGm(xi)),i=1,2,,N
    这里的 Z m Z_m Zm是规范化因子,使得 D m + 1 D_{m+1} Dm+1称为概率分布, Z m = ∑ i = 1 N w m i exp ⁡ ( − α m y i G m ( x i ) ) Z_{m}=\sum_{i=1}^{N} w_{m i} \exp \left(-\alpha_{m} y_{i} G_{m}\left(x_{i}\right)\right) Zm=i=1Nwmiexp(αmyiGm(xi))

(3) 构建基本分类器的线性组合 f ( x ) = ∑ m = 1 M α m G m ( x ) f(x)=\sum_{m=1}^{M} \alpha_{m} G_{m}(x) f(x)=m=1MαmGm(x),得到最终的分类器

G ( x ) = sign ⁡ ( f ( x ) ) = sign ⁡ ( ∑ m = 1 M α m G m ( x ) ) \begin{aligned} G(x) &=\operatorname{sign}(f(x)) \\ &=\operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right) \end{aligned} G(x)=sign(f(x))=sign(m=1MαmGm(x))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值