Python轴承故障诊断入门教学

本文详细介绍了轴承故障诊断的方法,包括振动分析、频域特征提取、时域特征、机器学习模型(如SVM、CNN、LSTM、Transformer)、深度学习模型以及各种融合技术,如EMD、FFT+CNN等,并提供了CWRU轴承数据集的使用和相关Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

往期精彩内容:

1 工作室实验平台介绍

2 轴承故障诊断教程—数据集

3 轴承故障诊断教程—算法模型

3.1 振动分析方法

3.2 频域特征提取

3.3 时域特征提取

3.4 模型基础的机器学习方法

3.5 深度学习方法

3.6 时频域融合方法

3.7 信号重构方法

3.8 基于统计学的方法

3.9 其他类型方法

4 轴承故障诊断教程—代码全家桶教程

4.1 凯斯西储大学(CWRU)轴承故障诊代码——全家桶

4.2 轴承故障诊断—创新模型全家桶


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型-CSDN博客

1 工作室实验平台介绍

实验模拟平台如下所示:

数据轴承齿轮箱故障模拟试验台的基本构成

PT500PRO轴承齿轮箱故障模拟试验台主要由设备基础底板平台,三相异步变频电机,联轴器,轴承动平衡转子盘组件,两级传动直齿轮箱,扭矩转速仪,行星齿轮箱,可编程磁粉加载器,触控屏操作单元,PLC,变频器,磁粉加载控制单元,通讯模块组成。

2 轴承故障诊断教程—数据集

 数据集介绍

凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集时域图-CSDN博客

航天发动机轴承故障数据集,参考论文介绍:

(PDF) Inter-shaft Bearing Fault Diagnosis Based on Aero-engine System: A Benchmarking Dataset Study (researchgate.net)

3 轴承故障诊断教程—算法模型

3.1 振动分析方法

3.1.1 傅里叶变换及其变体,短时傅里叶变换、快速傅里叶变换等

短时傅里叶变换,参考教程:

Python轴承故障诊断 (一)短时傅里叶变换STFT

快速傅里叶变换,参考教程:

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型

3.1.2 小波变换及其变体,参考教程:

Python轴承故障诊断 (二)连续小波变换CWT

3.1.3 时频分析方法

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类

3.2 频域特征提取

  • 频谱分析

  • 能量谱分析

  • 阶次分析

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

3.3 时域特征提取

  • 峰值指标

  • 方根幅值

  • 脉冲计数

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)_transformer 一维数据-CSDN博客

3.4 模型基础的机器学习方法

  • 支持向量机(SVM)

  • 决策树

  • 随机森林

  • 朴素贝叶斯

3.5 深度学习方法

  • 卷积神经网络(CNN)

  • 长短时记忆网络(LSTM)

  • 注意力机制

  • 时域-频域深度学习模型

  • 融合模型

  • 创新模型

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

3.6 时频域融合方法

  • 瞬时频率分析

  • 瞬时幅度分析

3.7 信号重构方法

  • 经验模态分解(EMD)及其变体

  • 零时域过零率(ZCR) 

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

3.8 基于统计学的方法

        均方根(RMS)

  • 峭度(Kurtosis)

  • 偏度(Skewness)

  • 主成分分析(PCA)

  • 自适应滤波算法

3.9 其他类型方法

  • 故障诊断专家系统

  • 有监督学习方法

  • 各种优化算法

4 轴承故障诊断教程—代码全家桶教程

4.1 凯斯西储大学(CWRU)轴承故障诊代码——全家桶

4.2 轴承故障诊断—创新模型全家桶

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

建模先锋

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值