相机标定和视觉相关好文记录

<项目介绍> 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到94.5分,放心下载使用! 该资源适合计算机相关专业(如人工智能、通信工程、自动化、软件工程等)的在校学生、老师或者企业员工下载,适合小白学习或者实际项目借鉴参考! 当然也可作为毕业设计、课程设计、课程作业、项目初期立项演示等。如果基础还行,可以在此代码基础之上做改动以实现更多功能。 双目测距理论及其python运用 一、双目测距基本流程 Stereo Vision, 也叫双目立体视觉,它的研究可以帮助我们更好的理解人类的双眼是如何进行深度感知的。双目视觉在许多领域得到了应用,例如城市三维重建、3D模型构建(如kinect fusion)、视角合成、3D跟踪、机器人导航(自动驾驶)、人类运动捕捉(Microsoft Kinect)等等。双目测距也属于双目立体视觉的一个应用领域,双目测距的基本原理主要是三角测量原理,即通过视差来判定物体的远近。 那么总结起来,双目测距的大致流程就是: **双目标定 --> 立体校正(含消除畸变) --> 立体匹配 --> 视差计算 --> 深度计算(3D坐标)计算** linux下安装opencv-python: ```python pip install opencv-python ``` 二、相机畸变 光线经过相机的光学系统往往不能按照理想的情况投射到传感器上,也就是会产生所谓的畸变。畸变有两种情况:一种是由透镜形状引起的畸变称之为径向畸变。在针孔模型中,一条直线投影到像素平面上还是一条直线。可是,在实际拍摄的照片中,摄像机的透镜往往使得真实环境中的一条直线在图片中变成了曲线。越靠近图像的边缘,这种现象越明显。由于实际加工制作的透镜往往是中心对称的,这使得不规则的畸变通常径向对称。它们主要分为两大类,桶形畸变 和 枕形畸变(摘自《SLAM十四讲》)如图所示: <div align=center><img src="https://img-blog.csdnimg.cn/20190907184815326.PNG" width="324" height="100" /></div> 桶形畸变是由于图像放大率随着离光轴的距离增加而减小,而枕形畸变却恰好相反。 在这两种畸变中,穿过图像中心和光轴有交点的直线还能保持形状不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值