将一组(burst)曝光下不同帧数的raw图读取处理(并做高低亮度平衡,【)

long_filepath = 'xxx.RAW'
short_filepath = 'ccc.RAW'
    fp1 = open(long_filepath, 'rb')
    fp2 = open(short_filepath, 'rb')

    size = 1920 * 1080  #分辨率

    longdata = []
    shortdata = []
    for i in range(size):
        data = fp1.read(2)
        curlong = struct.unpack('H', data)[0]   #[0]表示第一张图片 一个burst里有很多帧
        longdata.append(curlong)

        data = fp2.read(2)
        curshort = struct.unpack('H', data)[0]
        shortdata.append(curshort)

    rawlong = np.array(longdata).reshape((1080, 1920))
    rawshort = np.array(shortdata).reshape((1080, 1920))
  #下面代码是做高低亮度统一操作  如果不需要调节曝光比就取消下面的代码。
    rawlong = rawlong - 240

    rawlong = rawlong / 3.99  #3.99为曝光比

    rawshort = rawshort - 240

    rawlong[rawlong < 0] = 0
    rawshort[rawshort < 0] = 0
    
     
    raw = raw.astype(np.uint16)
    raw2 = raw2.astype(np.uint16)
    cv2.namedWindow('a')
    cv2.imshow('a',raw_long/4095)  #cv2可视化
    cv2.imshow('b',raw_rawshort/4095)
    cv2.waitkey(0)
    rawlong.tofile('out_L.raw')
    rawshort.tofile('out_M.raw')
    
    print(rawlong.shape)
    print(rawlong)

输入是原始的raw图,不带头信息的raw图,将其读取成numpy格式,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SetMaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值