【NLP/机器学习】数学基础复习(线代/高数/概率论)

未完成,仍在更新。

线性代数1

1 行列式

1.1 行列式定义

D n = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = Σ ( − 1 ) t ( p 1 p 2 . . . p n ) a 1 p 1 a 2 p 2 . . . a n p n = Σ ( − 1 ) t ( p 1 p 2 . . . p n ) a p 1 1 a p 2 2 . . . a p n n \begin{aligned} D_n= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} &=\Sigma(-1)^{t(p_1p_2...p_n)} a_{1p_1}a_{2p_2}...a_{np_n} \\ &=\Sigma(-1)^{t(p_1p_2...p_n)} a_{p_11}a_{p_22}...a_{p_nn} \end{aligned} Dn=a11a21...an1a12a22...an2............a1na2n...ann=Σ(1)t(p1p2...pn)a1p1a2p2...anpn=Σ(1)t(p1p2...pn)ap11ap22...apnn
行列式定义计算:不同行不同列选取元素做乘积再做和。式子1按照列标排序,即每一行选取不同列数的元素做乘积再做和(见下方公式)。按照行标准排序,则保持列不变,变动行。
(个数的话就是排列组合,以免算错。比如有三列,那摆在第一个的可以是三列中任意一列,第二个只有两列中任意一列,所以是3 X 2 X 1 = 6)
D n = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ( − 1 ) t ( 123 ) a 11 a 22 a 33 + ( − 1 ) t ( 132 ) a 11 a 23 a 32 + ( − 1 ) t ( 213 ) a 12 a 21 a 33 + ( − 1 ) t ( 231 ) a 12 a 23 a 31 + ( − 1 ) t ( 312 ) a 13 a 21 a 32 + ( − 1 ) t ( 321 ) a 13 a 22 a 31 \begin{aligned} D_n= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{vmatrix} &=(-1)^{t(1 2 3)} a_{11}a_{22}a_{33} + (-1)^{t(132)} a_{11}a_{23}a_{32} + (-1)^{t(213)} a_{12}a_{21}a_{33} \\&+ (-1)^{t(231)} a_{12}a_{23}a_{31} + (-1)^{t(312)} a_{13}a_{21}a_{32} + (-1)^{t(321)} a_{13}a_{22}a_{31} \end{aligned} Dn=a11a21a31a12a22a32a13a23a33=(1)t(123)a11a22a33+(1)t(132)a11a23a32+(1)t(213)a12a21a33+(1)t(231)a12a23a31+(1)t(312)a13a21a32+(1)t(321)a13a22a31
其中, t ( p 1 p 2 . . . p n ) t(p_1p_2...p_n) t(p1p2...pn)逆序数,当前数字后面有多少比当前数字小的数字之和。以 t ( 213 ) t(213) t(213) 为例,在2后面比2小的只有一个1,在1后面比1小的没有,在3后面比3小的没有,所以 t ( 213 ) = 1 + 0 + 0 t(213)=1+0+0 t(213)=1+0+0

例1
f ( x ) = ∣ x 1 1 2 1 x 1 − 1 3 2 x 1 1 1 2 x 1 ∣ , 求 x 3 的 系 数 \begin{aligned} f(x)= \begin{vmatrix} x & 1 & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 2x & 1 \\ \end{vmatrix} ,求x^3的系数 \end{aligned} f(x)=x1311x2111x2x2111x3
答:先找到各行各列可以相乘出现x3的元素,以 a 11 a_{11} a11表示位置,则 a 11 a 22 a 33 a 44 a_{11}a_{22}a_{33}a_{44} a11a22a33a44相乘或者 a 11 a 22 a 34 a 43 a_{11}a_{22}a_{34}a_{43} a11a22a34a43相乘可以得到x3。根据行列式定义可得:
( − 1 ) t ( 1234 ) x ⋅ x ⋅ x ⋅ 1 + ( − 1 ) t ( 1243 ) x ⋅ x ⋅ 1 ⋅ 2 x = x 3 − 2 x 3 = − x 3 (-1)^{t(1234)}x\cdot x\cdot x\cdot1+(-1)^{t(1243)}x\cdot x\cdot1\cdot2x = x^3 -2x^3 = -x^3 (1)t(1234)xxx1+(1)t(1243)xx12x=x32x3=x3,所以系数为1。

1.2 行列式性质

1.2.1 性质

1. D = D T D = D^T D=DT,行列式D的值等于其转置的值。其中,转置即将原行列式的第一行变成现行列式的第一列,并以此类推。
2. 行列式交换两行(列)后,值更改正负号。
3. 某一行的公因子可提到行列式外面。
4. 两行元素成比例,则行列式值为0
5. 行列式可将某一行拆开,变成两个行列式相加。其余行保持不变。
∣ . . . . . . . . . a i 1 + b i 1 . . . a i n + b i n . . . . . . . . . ∣ = ∣ . . . . . . . . . a i 1 . . . a i n . . . . . . . . . ∣ + ∣ . . . . . . . . . b i 1 . . . b i n . . . . . . . . . ∣ \begin{vmatrix} ... & ... & ...\\ a_{i1}+b_{i1} & ...& a_{in}+b_{in}\\ ... & ... & ...\\ \end{vmatrix} = \begin{vmatrix} ... & ... & ...\\ a_{i1} & ...& a_{in}\\ ... & ... & ...\\ \end{vmatrix} + \begin{vmatrix} ... & ... & ...\\ b_{i1} & ...& b_{in}\\ ... & ... & ...\\ \end{vmatrix} ...ai1+bi1...............ain+bin...=...ai1...............ain...+...bi1...............bin...
6. D = r i + k r j D D \xlongequal{r_i +kr_j} D Dri+krj D,某一行加上k倍的其他行(k可以是1,可以是负数,其他行也可以是自己)后行列式值不变。
7. a i 1 A j 1 + . . . + a i n A j n = { D i = j 0 i ≠ j a_{i1}A_{j1} +...+a_{in}A_{jn} = \left\{ \begin{array}{lr} D & i=j \\ 0 & i\neq j \end{array} \right. ai1Aj1+...+ainAjn={D0i=ji=j,其中, A i n A_{in} Ain a i n a_{in} ain的代数余子式, A i n = ( − 1 ) i + n M i n A_{in} = (-1)^{i+n} M_{in} Ain=(1)i+nMin组成, M i n M_{in} Min为去掉 a i n a_{in} ain所在行和所在列的行列式,也叫余子式。

1.2.2 特殊行列式的值

1.对角行列式(右上、左下、从左上至右下)
∣ a 11 a 12 ⋯ a 1 n a 22 ⋯ a 2 n ⋱ ⋮ a n n ∣ = ∣ a 11 a 21 a 22 ⋮ ⋱ a n 1 ⋯ ⋯ a n n ∣ = ∣ a 11 a 22 ⋱ a n n ∣ = a 11 a 22 ⋯ a n n \begin{aligned} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ &a_{22} & \cdots &a_{2n} \\ & & \ddots & \vdots \\ & & &a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & & & \\ a_{21} &a_{22} && \\ \vdots & & \ddots & \\ a_{n1} & \cdots & \cdots &a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & & & \\ & a_{22} && \\ & & \ddots & \\ && &a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn} \end{aligned} a11a12a22a1na2nann=a11a21an1a22ann=a11a22ann=a11a22ann
2.次对角行列式(左上、右下、自右上至左下): = ( − 1 ) n ( n − 1 ) 2 a 1 , n a 2 , n − 1 ⋯ a n , 1 =(-1)^{\frac{n(n-1)}{2}}a_{1,n}a_{2,n-1}\cdots a_{n,1} =(1)2n(n1)a1,na2,n1an,1
3.准上/下三角,其中 A m , B n A_m, B_n Am,Bn均为方阵:
∣ A m 0 C n × m B n ∣ = ∣ A m C n × m 0 B n ∣ = ∣ A m ∣ ⋅ ∣ B n ∣ \left | \begin{array}{c|c} A_m & 0 \\ \hline C_{n\times m} & B_{n} \end{array} \right| = \left | \begin{array}{c|c} A_m & C_{n\times m} \\ \hline 0 & B_{n} \end{array} \right| = |A_m| \cdot |B_n| AmCn×m0Bn=Am0Cn×mBn=AmBn
4.范德蒙德行列式
∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∣ 1 x 1 ⋯ x 1 n − 1 1 x 2 ⋯ x 2 n − 1 ⋮ ⋮ 1 x n ⋯ x n n − 1 ∣ = ∏ n ≥ i ≥ j ≥ 1 ( x i − x j ) = ( x 2 − x 1 ) ( x 3 − x 1 ) ⋯ ( x n − x 1 ) ⋅ ( x 3 − x 2 ) ( x 4 − x 2 ) ⋯ ( x n − x 2 ) ⋮ ⋅ ( x n − x n − 1 ) \begin{aligned} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 &x_2 & \cdots & x_n \\ \vdots & & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots &x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 &x_2 & \cdots & x_2^{n-1} \\ \vdots & & & \vdots \\ 1 & x_n& \cdots &x_n^{n-1} \end{vmatrix} &= \prod_{n\ge i\ge j \ge 1}(x_i-x_j)\\ &=(x_2-x_1)(x_3-x_1)\cdots(x_n-x_1)\\ & \cdot (x_3-x_2)(x_4-x_2)\cdots(x_n-x_2)\\ & \vdots\\ & \cdot (x_n-x_{n-1}) \end{aligned} 1x1x1n11x2x2n11xnxnn1=111x1x2xnx1n1x2n1xnn1=nij1(xixj)=(x2x1)(x3x1)(xnx1)(x3x2)(x4x2)(xnx2)(xnxn1)

例2:
D n = ∣ a 1 − b a 1 ⋯ a 1 a 2 a 2 − b ⋯ a 2 a 3 a 3 a 3 ⋮ ⋮ ⋮ ⋮ a n a n ⋯ a n − b ∣ , 求 D n 的 值 \begin{aligned} D_n= \begin{vmatrix} a_1-b & a_1 & \cdots & a_1 \\ a_2 & a_2-b & \cdots & a_2 \\ a_3 & a_3 & & a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_n & \cdots & a_n-b \end{vmatrix} ,求D_n的值 \end{aligned} Dn=a1ba2a3ana1a2ba3ana1a2a3anbDn
答: 观察行列式可以发现行之和或者列之和,所以先将所有加到第一行也保持行列式值不变(根据上方性质6)。
D n = r 1 + r 2 + ⋯ + r n ∣ ∑ i = 1 n a i − b ∑ i = 1 n a i − b ⋯ ∑ i = 1 n a i − b a 2 a 2 − b ⋯ a 2 a 3 a 3 a 3 ⋮ ⋮ ⋮ ⋮ a n a n ⋯ a n − b ∣ = c j − c 1 , j = 2 , ⋯   , n ∣ ∑ i = 1 n a i − b 0 ⋯ 0 a 2 − b ⋯ 0 a 3 0 0 ⋮ ⋮ ⋮ ⋮ a n 0 ⋯ − b ∣ = 按 照 a 11 展 开 ( ∑ i = 1 n a i − b ) ( − 1 ) n − 1 b D_n \xlongequal{r_1+r_2+\cdots+r_n} \begin{vmatrix} \sum _{i=1}^{n}a_i-b & \sum _{i=1}^{n}a_i-b & \cdots & \sum _{i=1}^{n}a_i-b \\ a_2 & a_2-b & \cdots & a_2 \\ a_3 & a_3 & & a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_n & \cdots & a_n-b \end{vmatrix}\\ \xlongequal{c_j - c_1, j = 2,\cdots,n} \begin{vmatrix} \sum _{i=1}^{n}a_i-b & 0 & \cdots & 0 \\ a_2 & -b & \cdots & 0 \\ a_3 & 0 & & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & 0 & \cdots & -b \end{vmatrix}\xlongequal{按照a_{11}展开} (\sum _{i=1}^{n}a_i-b)(-1)^{n-1}b Dnr1+r2++rn i=1naiba2a3ani=1naiba2ba3ani=1naiba2a3anbcjc1,j=2,,n i=1naiba2a3an0b00000ba11 (i=1naib)(1)n1b
例3
D n = ∣ x − 1 x − 1 ⋱ x − 1 a n ⋯ a 2 a 1 + x ∣ , 空 白 处 均 为 0 , 求 D n 的 值 。 \begin{aligned} D_n= \begin{vmatrix} x & -1 & & \\ & x &-1 & \\ & & & \\ & & \ddots & \\ & & x & -1 \\ a_n & \cdots & a_2 & a_1+x \end{vmatrix} ,空白处均为0,求D_n的值。 \end{aligned} Dn=xan1x1xa21a1+x0Dn
答:当0为多数时,直接展开即可,这里选取第一列展开,即 x x x乘上其代数余子式加上 a n a_n an乘上其代数余子式,结果为 x n + a 1 x n − 1 + a 2 x n − 2 + ⋯ + a n − 1 x + a n x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_{n-1}x+a_n xn+a1xn1+a2xn2++an1x+an

例4
D n + 1 = ∣ 1 1 ⋯ 1 1 a 0 0 0 ⋯ 0 a 1 1 0 0 ⋯ a 2 0 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 a n − 1 ⋯ 0 0 1 a n 0 ⋯ 0 0 1 ∣ , 求 值 。 D_{n+1} = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 & a_0\\ 0 & 0 & \cdots & 0 & a_1 & 1\\ 0 & 0 & \cdots & a_2 & 0 & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & a_{n-1} & \cdots & 0 & 0 & 1\\ a_n & 0 & \cdots & 0 & 0 & 1\\ \end{vmatrix},求值。 Dn+1=1000an100an1010a2001a1000a01111
答:除了0以外的元素组成了一个箭头,这种时候可以试着消除箭头一遍,造一个三角矩阵。这里消除 c n + 1 c_{n+1} cn+1列下所有的1,转换成次三角,根据特殊行列式的值2的公式可得:
D n + 1 = c n + 1 − 1 a n + 1 − i c i , i = 1 , . . n ∣ 1 1 ⋯ 1 1 a 0 − 1 a n − ⋯ − 1 a 1 0 0 ⋯ 0 a 1 0 0 0 ⋯ a 2 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 a n − 1 ⋯ 0 0 0 a n 0 ⋯ 0 0 0 ∣ = ( − 1 ) ( n + 1 ) n 2 ( a 1 ⋯ a n ) ( a 0 − 1 a n − ⋯ − 1 a 1 ) D_{n+1} \xlongequal{c_{n+1}-\frac{1}{a_{n+1-i}}c_i, i=1,..n} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 & a_0 - \frac{1}{a_n}-\cdots-\frac{1}{a_1}\\ 0 & 0 & \cdots & 0 & a_1 & 0\\ 0 & 0 & \cdots & a_2 & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & a_{n-1} & \cdots & 0 & 0 & 0\\ a_n & 0 & \cdots & 0 & 0 & 0\\ \end{vmatrix}\\ =(-1)^{\frac{(n+1)n}{2}}(a_1\cdots a_n)(a_0-\frac{1}{a_n}-\cdots-\frac{1}{a_1}) Dn+1cn+1an+1i1ci,i=1,..n 1000an100an1010a2001a1000a0an1a110000=(1)2(n+1)n(a1an)(a0an1a11)

例5
D n = ∣ 1 1 ⋯ 1 2 2 2 ⋯ 2 n 3 3 2 ⋯ 3 n ⋮ ⋮ ⋮ ⋮ n n 2 ⋯ n n ∣ , 求 值 。 D_n= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2^2 & \cdots & 2^n\\ 3 & 3^2 & \cdots & 3^n \\ \vdots & \vdots & \vdots & \vdots\\ n & n^2 & \cdots & n^n\\ \end{vmatrix},求值。 Dn=123n12232n212n3nnn
答:看起来很像范德蒙德。根据性质3提取各行公因子:
D n = ∣ 1 1 ⋯ 1 1 2 ⋯ 2 n − 1 1 3 ⋯ 3 n − 1 ⋮ ⋮ ⋮ ⋮ 1 n ⋯ n n − 1 ∣ × n ! = 利 用 范 德 蒙 德 ∏ n ≥ i ≥ j ≥ 1 ( x i − x j ) × n ! = ( 2 − 1 ) ( 3 − 1 ) ⋯ ( n − 1 ) ⋅ ( 3 − 2 ) ( 4 − 2 ) ⋯ ( n − 2 ) ⋯ 1 ⋅ n ! = n ! ( n − 1 ) ! ( n − 2 ) ! ⋯ 2 ! 1 ! D_n= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2^{n-1}\\ 1 & 3 & \cdots & 3^{n-1} \\ \vdots & \vdots & \vdots & \vdots\\ 1 & n & \cdots & n^{n-1}\\ \end{vmatrix}\times n! \xlongequal{利用范德蒙德} \prod_{n\ge i\ge j \ge 1}(x_i-x_j)\times n! \\=(2-1)(3-1)\cdots (n-1) \cdot(3-2)(4-2)\cdots (n-2)\\ \cdots 1\cdot n! = n!(n-1)!(n-2)!\cdots 2!1! Dn=1111123n12n13n1nn1×n! nij1(xixj)×n!=(21)(31)(n1)(32)(42)(n2)1n!=n!(n1)!(n2)!2!1!

1.3 代数余子式

  1. 余子式: M i j M_{ij} Mij,除去 a i j a_{ij} aij所在行列的行列式
  2. 代数余子式: A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij

例1
D 4 = ∣ 4 1 2 4 1 2 0 2 0 1 1 7 10 5 2 3 ∣ , 求 ① A 31 + 2 A 32 + 3 A 33 + 4 A 34 ② 第 4 行 代 数 余 子 式 之 和 ③ 第 4 行 余 子 式 之 和 \begin{aligned} D_4 = \begin{vmatrix} 4 & 1 & 2 & 4 \\ 1 & 2 & 0 & 2\\ 0 & 1 & 1 & 7 \\ 10 & 5 & 2 & 3\\ \end{vmatrix},求&①A_{31}+2A_{32}+3A_{33}+4A_{34}\\ &②第4行代数余子式之和\\ & ③第4行余子式之和 \end{aligned} D4=41010121520124273A31+2A32+3A33+4A3444
答:①因为涉及到第3行,可以直接把第三行换成1 2 3 4,解得-145;
②带符号, A 41 + A 42 + A 43 + A 44 = − 36 A_{41}+A_{42}+A_{43}+A_{44}=-36 A41+A42+A43+A44=36;
③不带符号, M 41 + M 42 + M 43 + M 44 = 18 M_{41}+M_{42}+M_{43}+M_{44}=18 M41+M42+M43+M44=18

2 矩阵及其计算

2.1 逆矩阵

矩阵行列式值不为0时,矩阵可逆。
求逆矩阵的常用方法

  1. 伴随矩阵法:当 ∣ A ∣ ≠ 0 |A|\neq 0 A=0 A − 1 = A ∗ ∣ A ∣ A^{-1} = \frac{A^*}{|A|} A1=AA,适用于 n ≤ 3 n\leq 3 n3。伴随矩阵 A ∗ A^* A是由代数余子式组成并转置后形成的。
    A ∗ = ( A 11 ⋯ A n 1 A 12 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n ⋯ A n n ) A^* = \begin{pmatrix} A_{11} & \cdots & A_{n1}\\ A_{12} & \cdots & A_{n2}\\ \vdots & \vdots & \vdots\\ A_{1n} & \cdots & A_{nn}\\ \end{pmatrix} A=A11A12A1nAn1An2Ann
  2. 对于二阶矩阵,当 a d − b c ≠ 0 ad-bc\neq0 adbc=0时, ( a b c d ) − 1 = 1 a d − b c ( d − b − c a ) \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix}^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \\ \end{pmatrix} (acbd)1=adbc1(dcba)
  3. 初等变换求逆:使用同阶单位矩阵,经过变换得到逆矩阵:
    ( A ∣ E ) ∼ ( E ∣ A − 1 ) , E = ( 1 0 0 0 1 0 0 0 1 ) (A | E) \sim (E|A^{-1}), E=\begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0& 0 & 1\end{pmatrix} (AE)(EA1)E=100010001
  4. 分块矩阵求逆
    当 ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ ≠ 0 , ( A 1 A 2 ⋱ A s ) − 1 = ( A 1 − 1 A 2 − 1 ⋱ A s − 1 ) 当|A_1||A_2|\cdots |A_s|\neq 0, \begin{pmatrix} A_1 & & &\\ & A_2 & & &\\ & & \ddots &\\ & & & A_s \end{pmatrix}^{-1} = \begin{pmatrix} A_1^{-1} & & &\\ & A_2^{-1} & & &\\ & & \ddots &\\ & & & A_s^{-1} \end{pmatrix} A1A2As=0,A1A2As1=A11A21As1
    空白部分均为0,另一种矩阵是从右上 A 1 A_1 A1到左下 A s A_s As,其逆矩阵为右上 A s − 1 A_s^{-1} As1到左下 A 1 − 1 A_1^{-1} A11
  5. 利用定义计算逆矩阵,一般用于抽象矩阵
    A B = B A = E AB=BA=E AB=BA=E,则 A A A可逆,且 A − 1 = B A^{-1} = B A1=B

例1
A = ( 3 0 0 1 4 0 0 0 3 ) , 计 算 ( A − 2 E ) − 1 A=\begin{pmatrix} 3 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 3 \\ \end{pmatrix},计算(A-2E)^{-1} A=310040003(A2E)1
答: A − 2 E = ( 3 − 2 0 0 1 4 − 2 0 0 0 3 − 2 ) = B A-2E=\begin{pmatrix} 3-2 & 0 & 0 \\ 1 & 4-2 & 0 \\ 0 & 0 & 3-2 \\ \end{pmatrix} = B A2E=321004200032=B
方法1,用 B − 1 = B ∗ ∣ B ∣ B^{-1} = \frac{B^*}{|B|} B1=BB计算,得 B − 1 = ( 2 0 0 − 1 1 0 0 0 2 ) B^{-1}=\begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \\ \end{pmatrix} B1=210010002
方法2,分块矩阵利用上述性质4求逆,其中单一矩阵 ( a ) − 1 = ( 1 a ) (a)^{-1} = (\frac{1}{a}) (a)1=(a1)
A − 2 E = ( 1 0 ∣ 0 1 2 ∣ 0 0 0 ∣ 1 ) = B = ( A 1 0 0 A 2 ) A-2E=\begin{pmatrix} 1 & 0 &|& 0 \\ 1 & 2 & |&0 \\ \hline 0 & 0 &|& 1 \\ \end{pmatrix} = B = \begin{pmatrix} A_1 & 0\\ 0 & A_2\\ \end{pmatrix} A2E=110020001=B=(A100A2)
方法3, ( A − 2 E ∣ E ) = r 2 − r 1 X 1 = r 2 ÷ 2 ( E ∣ ( A − 2 E ) − 1 ) (A-2E |E)\xlongequal{r_2-r_1}X_1\xlongequal{r_2\div2}(E|(A-2E)^{-1}) (A2EE)r2r1 X1r2÷2 (E(A2E)1)

例2
A = ( 0 a 1 0 ⋯ 0 0 0 a 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 ⋯ a n − 1 a n 0 0 ⋯ 0 ) , a i ≠ 0 , 求 A − 1 A=\begin{pmatrix} 0 & a_1 & 0 &\cdots & 0\\ 0 & 0 & a_2 &\cdots & 0\\ \vdots & \vdots& \vdots & & \vdots\\ 0 & \cdots & 0 &\cdots & a_{n-1}\\ a_n & 0 & 0 &\cdots & 0\\ \end{pmatrix}, a_i\neq 0,求A^{-1} A=000ana1000a20000an10,ai=0A1
答:分块矩阵转变 A = ( 0 ∣ a 1 0 ⋯ 0 0 ∣ 0 a 2 ⋯ 0 ⋮ ∣ ⋮ ⋮ ⋮ 0 ∣ ⋯ 0 ⋯ a n − 1 a n ∣ 0 0 ⋯ 0 ) = ( 0 B C 0 ) , 再 根 据 上 述 性 质 4 解 得 A=\begin{pmatrix} 0 &|& a_1 & 0 &\cdots & 0\\ 0 &|& 0 & a_2 &\cdots & 0\\ \vdots & |& \vdots& \vdots & & \vdots\\ 0 &|& \cdots & 0 &\cdots & a_{n-1}\\ \hline a_n &|& 0 & 0 &\cdots & 0\\ \end{pmatrix} = \begin{pmatrix} 0 & B\\ C & 0 \end{pmatrix},再根据上述性质4解得 A=000ana1000a20000an10=(0CB0)4
A − 1 = ( 0 0 ⋯ ⋯ 1 a n 1 a 1 0 ⋯ ⋯ 0 0 1 a 2 0 ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 a n 0 ) A^{-1}=\begin{pmatrix} 0 & 0 &\cdots &\cdots & \frac{1}{a_n}\\ \frac{1}{a_1} & 0 &\cdots &\cdots & 0\\ 0 & \frac{1}{a_2} & 0&\cdots &\vdots\\ \vdots & \vdots& \vdots & \vdots& \vdots\\ 0 & 0 &\cdots & \frac{1}{a_n } & 0\\ \end{pmatrix} A1=0a110000a2100an1an100

例3 A 3 − 2 A 2 + 3 A − 4 E = 0 A^3-2A^2+3A-4E=0 A32A2+3A4E=0,证 A − E A-E AE可逆,求 ( A − E ) − 1 (A-E)^{-1} (AE)1
答:抽象矩阵,可以用定义计算。凑一个 ( A − E ) ( ? ) = E (A-E)(?)=E (AE)(?)=E,为了凑出(?),将 A 3 − 2 A 2 + 3 A − 4 E A^3-2A^2+3A-4E A32A2+3A4E 除以 ( A − E ) (A-E) (AE),解得商为 ( A 2 − A + 2 E ) (A^2-A+2E) (A2A+2E) ( − 2 E ) (-2E) (2E)
因此, A 3 − 2 A 2 + 3 A − 4 E = ( A − E ) ( A 2 − A + 2 E ) − 2 E = 0 ( A − E ) [ 1 2 ( A 2 − A + 2 E ) ] = E ( A − E ) − 1 = 1 2 ( A 2 − A + 2 E ) \begin{aligned}A^3-2A^2+3A-4E=(A-E)(A^2-A+2E)-2E=0 \\(A-E)[\frac{1}{2}(A^2-A+2E)] = E\\ (A-E)^{-1}=\frac{1}{2}(A^2-A+2E) \end{aligned} A32A2+3A4E=(AE)(A2A+2E)2E=0(AE)[21(A2A+2E)]=E(AE)1=21(A2A+2E)
如果不用除法凑出来,可以直接设 ( A − E ) ( a A 2 + b A + c E ) = d E (A-E)(aA^2+bA+cE)=dE (AE)(aA2+bA+cE)=dE,解得 a = 1 , b = − 1 , c = 2 , d = 2 a=1,b=-1,c=2,d=2 a=1,b=1,c=2,d=2

2.2 矩阵方程

求矩阵方程步骤:

  1. 移项,将未知项放入一边
  2. 合并,提取未知项前面的矩阵做合并。 A X ± B X = ( A ± B ) X AX\pm BX = (A \pm B)X AX±BX=(A±B)X,但是 A X ± X B AX\pm XB AX±XB则不可合并,因为矩阵相乘不满足交换律
  3. 还原, { A X = B 当 A 可 逆 , 则 左 乘 A − 1 = > X = A − 1 B X A = B 当 A 可 逆 , 则 右 乘 A − 1 = > X = B A − 1 \left\{ \begin{array}{lr} AX = B & 当A可逆,则左乘A^{-1} => X= A^{-1}B \\ XA = B & 当A可逆,则右乘A^{-1} => X= BA^{-1} \end{array}\right. {AX=BXA=BAA1=>X=A1BAA1=>X=BA1

矩阵的初等变换及线性方程组求解

向量组的线性相关性

相似矩阵及二次型

范数

https://blog.csdn.net/a6333230/article/details/87860875

高数

导数/微分/积分

泰勒展开公式

梯度

https://www.zhihu.com/question/278342330

https://blog.csdn.net/pipisorry/article/details/52200140

概率论

把各个细节概率进行记录,后期可用于查字典

有人整理了一些机器学习会涉及到的数学https://zhuanlan.zhihu.com/p/36357540

注:

  1. 此NLP学习路径参考@DASOU,本人仅在此做学习记录。
  2. 一些参考链接1链接2链接3链接4

  1. 参考视频资料 ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值