数值计算之 插值法(4)切比雪夫零点插值
前言
上篇插值法讨论了多项式插值的解,以及龙格现象。本篇将介绍一种在抽取节点时有效降低龙格现象的方法——切比雪夫零点插值。
插值点选取
插值多项式阶数较高时,在取值空间均匀取点,容易出现龙格现象。
即区间边缘的插值结果与原函数差异很大,而区间中央的插值结果相对较好。这表明,高阶多项式插值对区间中央的节点拟合好,而对两端节点拟合效果差。
自然而然会想到,在两端多采样一些节点,在中间少采样一些节点,就能更好的对函数插值了。
第一类切比雪夫多项式
n阶切比雪夫多项式可以表示为:
T n ( x ) = cos ( n arccos x ) , ∣ x ∣ ≤ 1 T_n(x)=\cos(n\arccos x),|x|\le1 Tn(x)=cos(narccosx),∣x∣≤1
切比雪夫多项式可以写成递推形式:
T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) T_{n+1}(x)=2xT_n(x)-T_{n-1}(x) Tn+1(x)=2xTn(x)−Tn−1(x)
前四阶切比雪夫多项式如下:
T 0 ( x ) = 1 T 1 ( x ) = x T 2 ( x ) = 2 x 2 − 1 T 3 ( x ) = 4 x 3 − 3 x T 4 ( x ) = 8 x 4 − 8 x 2 + 1 T_0(x)=1 \\ T_1(x)=x \\ T_2(x)=2x^2-1 \\ T_3(x)=4x^3-3x \\ T_4(x)=8x^4-8x^2+1 \\ T0(x)=1T1(x)=xT2(x)=