概率论之——高斯分布的乘积

一、前言

本来我并不想开机器学习这个专栏,因为机器学习与高数线代矩阵论概率论密切相关,我的数学能力没达到这种高度。然而控制理论也会涉及各种数理统计知识,那就不得不开一个数理栏了。

这个栏没有具体的知识路线,写到哪算哪,数学和机器学习相关且不好分类的东西都会往这边放。

二、高斯分布(正态分布)

假设随机变量 x 1 x_1 x1服从均值和方差为 μ 1 ,   σ 1 2 \mu_1, \ \sigma_1^2 μ1, σ12的高斯分布,可记作 x 1 ∼ N ( μ 1 ,   σ 1 ) x_1 \sim N(\mu_1, \ \sigma_1) x1N(μ1, σ1),其概率密度函数为:
p ( x 1 ) = 1 2 π σ 1 exp ⁡ [ − ( x − μ 1 ) 2 2 σ 1 2 ] p(x_1)= \frac {1} {\sqrt {2\pi}\sigma_1} \exp [ - \frac {(x-\mu_1)^2}{2\sigma_1^2}] p(x1)=2π σ11exp[2σ12(xμ1)2]

标准高斯分布

如果随机变量 x ∼ N ( 0 , 1 ) x \sim N(0, 1) xN(0,1),则称 x x x服从标准高斯(正态)分布:
p ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) p(x)=\frac {1}{\sqrt {2\pi}} \exp ( - \frac {x^2}{2}) p(x)=2π 1exp(2x2)

高斯分布的基本性质

假设 x ∼ N ( μ , σ 2 ) x\sim N(\mu, \sigma^2) xN(μ,σ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值