一、前言
本来我并不想开机器学习这个专栏,因为机器学习与高数线代矩阵论概率论密切相关,我的数学能力没达到这种高度。然而控制理论也会涉及各种数理统计知识,那就不得不开一个数理栏了。
这个栏没有具体的知识路线,写到哪算哪,数学和机器学习相关且不好分类的东西都会往这边放。
二、高斯分布(正态分布)
假设随机变量 x 1 x_1 x1服从均值和方差为 μ 1 , σ 1 2 \mu_1, \ \sigma_1^2 μ1, σ12的高斯分布,可记作 x 1 ∼ N ( μ 1 , σ 1 ) x_1 \sim N(\mu_1, \ \sigma_1) x1∼N(μ1, σ1),其概率密度函数为:
p ( x 1 ) = 1 2 π σ 1 exp [ − ( x − μ 1 ) 2 2 σ 1 2 ] p(x_1)= \frac {1} {\sqrt {2\pi}\sigma_1} \exp [ - \frac {(x-\mu_1)^2}{2\sigma_1^2}] p(x1)=2πσ11exp[−2σ12(x−μ1)2]
标准高斯分布
如果随机变量 x ∼ N ( 0 , 1 ) x \sim N(0, 1) x∼N(0,1),则称 x x x服从标准高斯(正态)分布:
p ( x ) = 1 2 π exp ( − x 2 2 ) p(x)=\frac {1}{\sqrt {2\pi}} \exp ( - \frac {x^2}{2}) p(x)=2π1exp(−2x2)
高斯分布的基本性质
假设 x ∼ N ( μ , σ 2 ) x\sim N(\mu, \sigma^2) x∼N(μ,σ