阅读论文计划 4/10000 脑出血分割

Siamese U-Net with Healthy Template for Accurate Segmentation of Intracranial Hemorrhage maccai2019
在这里插入图片描述
模型由两大部分组成:一个收缩部分(Contracting part)和一个扩张部分(Expansive part),与U-Net的典型结构一致。这个网络利用了权重共享(Weight sharing)机制来增强特征的提取能力,并且可能更好地处理医学图像中常见的差异和变化。

提出了一种新的卷积神经网络模型,名为Siamese U-Net,用于在非对比度CT图像中更准确地分割出脑出血区域。该模型引入了一种基于健康模板的距离度量,通过比较个体CT图像和健康模板的卷积特征,更稳健地检测出异常的出血区域。通过结合健康脑部的特征信息,Siamese U-Net能够降低虚阴性和虚阳性分割率,并更准确地估计出血量。

Siamese U-Net的工作流程包括以下步骤:

  1. 输入图像对:Siamese U-Net接受成对的患者CT图像和健康模板作为输入。
  2. 提取特征:通过共享权重的卷积核和最大池化,Siamese U-Net计算输入图像的高级特征。
    3. 计算相似度:利用L1距离、权重乘法和Sigmoid函数,计算输入图像的高级特征之间的相似度。
  3. U-Net分割:Siamese U-Net使用U-Net结构进行分割,将收缩部分到扩张部分的长跳连接替换为Siam块,以在转移卷积特征的同时结合患者CT和健康模板的差异性。
  4. 输出分割结果:Siamese U-Net输出更准确的分割结果,减少了虚阳性和虚阴性分割率,并更准确地估计出血量。

Siamese U-Net通过Siam块实现对异常区域的关注。具体来说,Siam块计算了两个输入图像的特征之间的差异,并根据这种差异性来加权特征传递。如果两个图像非常相似,Siam块将返回较低的差异值,从而减少对应特征的权重,使得这些相似的特征对最终的分割结果影响较小。相反,如果两个图像差异很大,Siam块将返回较高的差异值,从而增加对应特征的权重,使得这些不同的特征对最终的分割结果影响较大。

通过这种方式,Siamese U-Net能够更加关注异常区域,即那些在两个图像中差异较大的区域,从而提高了对异常区域的检测和分割的准确性。

脑出血CT影像分割算法是用于将脑部出血区域从CT影像中分离出来的一种算法。在脑出血CT影像分割中,存在一些难点。首先,需要将脑部区域与非脑部区域进行分离,这是因为在CT影像中,脑部与头骨等非脑组织之间的区别不明显。基于亮度的分割算法可能会受到噪声、部分容积效应和偏压场效应等因素的影响而产生误判。 为了解决这个问题,可以采用一些先进的图像处理技术和算法。例如,可以使用基于区域增长的方法,通过选择一个种子点并根据相似度准则将与种子点相连的像素逐步扩展为脑部区域。同时,还可以利用形态学操作,如膨胀和腐蚀,来进行边缘的提取和优化。此外,还可以结合机器学习方法,使用经过训练的分类器来自动分割脑部出血区域。这些方法可以提高脑出血CT影像分割的准确性和鲁棒性。 总之,脑出血CT影像分割算法是通过应用图像处理和机器学习技术,将脑部出血区域从CT影像中准确地分割出来的算法。在分割过程中,需要克服脑部与非脑部区域的区分难题,并结合多种方法和技术来提高分割的准确性和鲁棒性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [大脑区域图像分割](https://blog.csdn.net/qq_38789531/article/details/103662771)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值