Recurrent Sub-volume Analysis of Head CT Scans for the Detection
of Intracranial Hemorrhage maccai2019
该论文的主要创新点包括:
- 提出了一种将切片级别和整个扫描级别分析相结合的方法,以考虑计算复杂性、上下文信息和缺失小型异常的问题。
- 提出了一种无监督方法来提取颅内区域。
- 创建了子体积以确保发现微小异常的可见性。
- 生成了每个子体积的多个复合图像,以更好地显示异常。
- 将密集连接卷积神经网络(DenseNet)与递归神经网络(RNN)级联,以考虑跨子体积的上下文信息。
展示的是一种用于医学图像分析的计算框架,专门用于识别脑出血情况。框架的第一步是输入扫描,这通常指的是脑部的CT扫描或MRI图像。首先进行**“windowing”或窗宽窗位调整**,以优化图像比对脑组织类型的可见度;其次是“Brain region extraction”,这个步骤中将从整个图像中剔除非脑部区域,只保留脑部的扫描结果。
在脑区域提取之后,框架将脑部区域进一步划分为较小的子体积(sub-volumes),每个子体积将独立进行处理。对于每个子体积分别执行以下序列:首先,使用最大强度投影(MIP)和大津阈值(Otsu)方法来增强潜在的出血信号;然后利用卷积神经网络(DenseNet)来提取特征;最后,将特征输入到递归神经网络(RNN)来捕捉子体积之间的空间关系。这个处理序列有助于系统判断每个子体积内的出血情况。整个过程对每个子体积重复执行,最终系统将综合所有子体积的结果,来确定是否存在颅内正常情形(NO ICH)或颅内出血(ICH)。通过这种结合了CNN和RNN的深度学习框架,可以更准确地分析和诊断颅内出血。
颅内区域的提取是通过一种无监督的方法实现的。具体来说,该方法包括以下步骤:
-
对整个CT扫描应用“brain window”,窗宽为80,窗位为40,以突出显示脑组织类型。
-
通过自动阈值分割方法,将扫描图像中的像素分为空气、软组织和骨头三类。然后,通过识别最大的骨头岛屿并对其进行凸包拟合,提取出颅骨的外轮廓。
-
对于每个切片,找到其中最大的软组织岛屿,以此确定包含最大脑区域的切片(Slice_maxbr)。
-
对于位于Slice_maxbr以上的切片,将最大软组织岛屿定义为脑部区域。
-
对于位于Slice_maxbr以下的切片,使用上一切片中提取的脑部区域作为初始区域,通过将该区域与当前切片的ROI相乘,然后提取当前切片中的最大3个软组织岛屿,来提取脑部区域。
子体积的创建是通过将整个脑部区域划分为多个子体积来实现的。具体来说,将整个脑部区域划分为n个子体积,每个子体积的大小为(J, K, L),其中i表示第i个子体积,j表示第j个切片,k表示第k个行,l表示第l个列。在每个子体积中,使用最大强度投影(MIP)、最小强度投影(MinIP)和大津阈值(OtsuIP)方法生成三个复合图像,以增强潜在的出血信号。这些复合图像可以提高对颅内出血的检测能力,同时也可以减少噪声的影响。
具体来说,**MIP图像有助于识别高密度区域,特别是出血区域;MinIP图像有助于突出脑室异常、低密度区域和硬膜下区域的异常;OtsuIP图像则可以捕捉高密度和低密度区域的异常。**在这项研究中,n的值为16,这意味着整个脑部区域被划分为16个子体积,每个子体积都有三个复合图像。这些复合图像可以并行输入到DenseNet中,以提取特征并进行颅内出血的检测。