2021浙江工业大学828自动控制理论参考答案

1、(2021.12.17改)

由基尔霍夫电流定律可得:
u i ( t ) = L d i L ( t ) d t + R i R u o ( t ) = 1 C ∫ i C ( t ) d t = R i R i L = i R + i C \begin{aligned} u_i(t) &=L\frac{\text{d}i_L(t)}{\text{d}t}+Ri_R \\ u_o(t) &=\frac{1}{C}\int i_C(t)\text{d}t = Ri_R\\ i_L&=i_R+i_C \end{aligned} ui(t)uo(t)iL=LdtdiL(t)+RiR=C1iC(t)dt=RiR=iR+iC
(1)
对上式取拉氏变换,消去中间变量,得到该电路的传递函数
U i ( s ) U i ( s ) = R R L C s 2 + L s + R \frac{U_i(s)}{U_i(s)}=\frac{R}{RLCs^2+Ls+R} Ui(s)Ui(s)=RLCs2+Ls+RR
(2)
u i u_i ui为输入、 i R i_R iR为输出的传递函数为
I R ( s ) U i ( s ) = 1 R L C s 2 + L s + R \frac{I_R(s)}{U_i(s)}=\frac{1}{RLCs^2+Ls+R} Ui(s)IR(s)=RLCs2+Ls+R1
s = j ω s=j\omega s=,电路的频率特性为
A ( ω ) = 1 R ( 1 − L C ω 2 ) 2 + L 2 R 2 ω 2 φ ( ω ) = − arctan ⁡ L R ω 1 − L C ω 2 \begin{aligned} A(\omega)&=\cfrac{\cfrac{1}{R}}{\sqrt{(1-LC\omega^2)^2+\cfrac{L^2}{R^2}\omega^2}} \\ \varphi(\omega)&=-\arctan\cfrac{\cfrac{L}{R}\omega}{1-LC\omega^2} \end{aligned} A(ω)φ(ω)=(1LCω2)2+R2L2ω2 R1=arctan1LCω2RLω
(3)
输入 u i = U sin ⁡ ω t u_i=U\sin\omega t ui=Usinωt,流过电阻的稳态电流为
i R = U ∣ A ( ω ) ∣ sin ⁡ ( ω t + φ ( ω ) ) = U R 2 ( 1 − L C U 2 ) 2 + L 2 U 2 sin ⁡ ( ω t − arctan ⁡ L U R ( 1 − L C U 2 ) ) = R R 2 ( 1 − L C U 2 ) 2 + L 2 ω 2 sin ⁡ ( ω t − arctan ⁡ L ω R ( 1 − L C ω 2 ) ) \begin{aligned} i_R&=U|A(\omega)|\sin(\omega t+\varphi(\omega)) \\ &\xcancel{=\cfrac{U}{\sqrt{R^2(1-LCU^2)^2+L^2U^2}}\sin\left(\omega t-\arctan\cfrac{LU}{R(1-LCU^2)}\right)} \\ &=\cfrac{R}{\sqrt{R^2(1-LCU^2)^2+L^2\omega^2}}\sin\left(\omega t-\arctan\cfrac{L\omega}{R(1-LC\omega^2)}\right) \end{aligned} iR=UA(ω)sin(ωt+φ(ω))=R2(1LCU2)2+L2U2 Usin(ωtarctanR(1LCU2)LU) =R2(1LCU2)2+L2ω2 Rsin(ωtarctanR(1LCω2)Lω)

2、

(1)
系统的开环传递函数
G ( s ) = K 1 K 2 s ( s + β K 2 ) G(s)=\frac{K_1K_2}{s(s+\beta K_2)} G(s)=s(s+βK2)K1K2
系统的闭环传递函数
Φ ( s ) = K 1 K 2 s 2 + β K 2 s + K 1 K 2 \Phi(s)=\frac{K_1K_2}{s^2+\beta K_2s+K_1K_2} Φ(s)=s2+βK2s+K1K2K1K2
(2)
K 1 K_1 K1 K 2 K_2 K2都为正的常熟,根据赫尔维茨稳定性判据可知,二阶闭环系统的特征方程的系数均大于零时系统稳定,则有 β > 0 \beta>0 β>0
(3)
系统的阻尼比和自然振荡频率为
ζ = β K 2 K 1 , ω n = K 1 K 2 \zeta=\beta\sqrt{\cfrac{K_2}{K_1}},\quad \omega_n=\sqrt{K_1K_2} ζ=βK1K2 ,ωn=K1K2
根据
t r = π − arccos ⁡ ζ ω n 1 − ζ 2 , t p = π ω n 1 − ζ 2 , σ % = e − π ζ 1 − ζ 2 × 100 % , t s = 4.5 ζ ω n t_r=\cfrac{\pi-\arccos\zeta}{\omega_n\sqrt{1-\zeta^2}},\quad t_p=\cfrac{\pi}{\omega_n\sqrt{1-\zeta^2}}, \quad \sigma\%=e^{-\cfrac{\pi\zeta}{\sqrt{1-\zeta^2}}} \times 100\%,\quad t_s=\cfrac{4.5}{\zeta\omega_n} tr=ωn1ζ2 πarccosζ,tp=ωn1ζ2 π,σ%=e1ζ2 πζ×100%,ts=ζωn4.5
考虑系统为欠阻尼时, β \beta β增大时, ζ \zeta ζ增大, t r t_r tr增加, t p t_p tp减少, σ % \sigma\% σ%减少, t s t_s ts减少。
(4)
由开环传递函数可知,该系统为 I \text{I} I型系统,阶跃信号输入时,稳态误差为零;斜坡信号输入时,稳态误差为
K v = lim ⁡ s → 0 s ⋅ K 1 K 2 β K 2 s ( 1 β K 2 + 1 ) = K 1 K 2 β K 2 K_v=\lim_{s\rightarrow0}s\cdot\cfrac{\cfrac{K_1K_2}{\beta K_2}}{s(\cfrac{1}{\beta K_2}+1)}=\cfrac{K_1K_2}{\beta K_2} Kv=s0limss(βK21+1)βK2K1K2=βK2K1K2
抛物信号输入时,稳态误差为 ∞ \infin

3、(2022.10.31改)

对微分方程组进行拉氏变换
T 1 s 2 C ( s ) + s C ( s ) = K 2 U ( s ) U ( s ) = K 1 E ( s ) E ( s ) = R ( s ) − B ( s ) T 2 s B ( s ) + B ( s ) = C ( s ) T_1s^2C(s)+sC(s)=K_2U(s) \\ U(s)=K_1E(s) \\ E(s)=R(s)-B(s) \\ T_2sB(s)+B(s)=C(s) T1s2C(s)+sC(s)=K2U(s)U(s)=K1E(s)E(s)=R(s)B(s)T2sB(s)+B(s)=C(s)
(1)
化简去除中间变量,系统的误差传递函数为
E ( s ) R ( s ) = s ( T 1 s + 1 ) ( T 2 s + 1 ) s ( T 1 s + 1 ) ( T 2 s + 1 ) + K 1 K 2 = 0.001 s 3 + 0.11 s 2 + s 0.001 s 3 + 0.11 s 2 + s + 10 K 1 \begin{aligned} \cfrac{E(s)}{R(s)}&=\cfrac{s(T_1s+1)(T_2s+1)}{s(T_1s+1)(T_2s+1)+K_1K_2} \\ &=\cfrac{0.001s^3+0.11s^2+s}{0.001s^3+0.11s^2+s+10K_1} \end{aligned} R(s)E(s)=s(T1s+1)(T2s+1)+K1K2s(T1s+1)(T2s+1)=0.001s3+0.11s2+s+10K10.001s3+0.11s2+s
(2)
系统的闭环特征方程为
Δ ( s ) = 0.001 s 3 + 0.11 s 2 + s + 10 K 1 = 0 \Delta(s)=0.001s^3+0.11s^2+s+10K_1=0 Δ(s)=0.001s3+0.11s2+s+10K1=0
列劳斯表
s 3 0.001 1 s 2 0.11 10 K 1 s 1 0.11 − 0.01 K 1 0.11 s 0 10 K 1 \begin{matrix} s^3 & 0.001 & 1 \\ s^2 & 0.11 & 10K_1 \\ s^1 & \cfrac{0.11-0.01K_1}{0.11} \\ s^0 &10K_1 \end{matrix} s3s2s1s00.0010.110.110.110.01K110K1110K1
系统闭环稳定时,劳斯表第一列大于零,则
0.11 − 0.01 K 1 0.11 > 0 , 10 K 1 > 0 \cfrac{0.11-0.01K_1}{0.11}>0, \quad 10K_1>0 0.110.110.01K1>0,10K1>0

0 < K 1 < 110 \xcancel{0<K_1<110} 0<K1<110
0 < K 1 < 11 0<K_1<11 0<K1<11
(3)
当输入信号为 R ( s ) = 1 s + 1 s 2 R(s)=\cfrac{1}{s}+\cfrac{1}{s^2} R(s)=s1+s21,利用终值定理
e s s ( ∞ ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s ⋅ ( 1 s + 1 s 2 ) ⋅ 0.001 s 3 + 0.11 s 2 + s 0.001 s 3 + 0.11 s 2 + s + 10 K 1 = 1 10 K 1 \begin{aligned} e_{ss}(\infin)&=\lim_{s\rightarrow0}sE(s) \\ &=\lim_{s\rightarrow0}s\cdot \left(\cfrac{1}{s}+\cfrac{1}{s^2}\right)\cdot\cfrac{0.001s^3+0.11s^2+s}{0.001s^3+0.11s^2+s+10K_1} \\ &= \cfrac{1}{10K_1} \end{aligned} ess()=s0limsE(s)=s0lims(s1+s21)0.001s3+0.11s2+s+10K10.001s3+0.11s2+s=10K11
系统的稳态误差不大于 0.1 0.1 0.1,则
10 ⩽ K 1 < 110 \xcancel{ 10\leqslant K_1<110 } 10K1<110
10 ⩽ K 1 < 11 10\leqslant K_1<11 10K1<11

4、

(1)
对差分方程取 Z Z Z变换
G 1 ( z ) = 1 − z − 1 G 2 ( z ) = 4 z − 1 5 z − 2 − 1.5 z − 1 + 1 \begin{aligned} G_1(z)&=1-z^{-1} \\ G_2(z)&=\cfrac{4z^{-1}}{5z^{-2}-1.5z^{-1}+1} \end{aligned} G1(z)G2(z)=1z1=5z21.5z1+14z1
(2)
系统的闭环脉冲传递函数为
Φ ( z ) = 4 ( z − 1 ) z 2 + 2.5 z + 1 \Phi(z)=\cfrac{4(z-1)}{z^2+2.5z+1} Φ(z)=z2+2.5z+14(z1)
闭环特征方程为
Δ ( z ) = z 2 + 2.5 z + 1 = 0 \Delta(z)=z^2+2.5z+1=0 Δ(z)=z2+2.5z+1=0
z = w + 1 w − 1 z=\cfrac{w+1}{w-1} z=w1w+1,则
Δ ( w ) = 4.5 w 2 − 0.5 \Delta(w)=4.5w^2-0.5 Δ(w)=4.5w20.5
缺项,系统不稳定。
(2021.11.18增加) 直接解特征方程可得到特征根 z 1 = − 0.5 z_1=-0.5 z1=0.5 z 2 = − 2 z_2=-2 z2=2,有一个特征根不在单位圆内,系统不稳定。

5、(2021.12.17改)

(1)
利用复数阻抗方法
U ( s ) 100 K + X 1 ( s ) 100 K = − ( 5 μ F s + 1 200 K ) X 2 ( s ) X 2 ( s ) 200 K + X 3 ( s ) 200 K = − ( 10 μ F s + 1 200 K ) X 4 ( s ) X 4 ( s ) 200 K = − 5 μ F s X 1 ( s ) − X 3 ( s ) 200 K = 5 μ F s X 1 ( s ) \cfrac{U(s)}{100K}+\cfrac{X_1(s)}{100K}=-\left(5\mu Fs+\cfrac{1}{200K} \right)X_2(s) \\ \cfrac{X_2(s)}{200K}+\cfrac{X_3(s)}{200K}=-\left(10\mu Fs+\cfrac{1}{200K}\right)X_4(s) \\ \cfrac{X_4(s)}{200K}=-5\mu FsX_1(s)\\ -\cfrac{X_3(s)}{200K}=5\mu FsX_1(s) 100KU(s)+100KX1(s)=(5μFs+200K1)X2(s)200KX2(s)+200KX3(s)=(10μFs+200K1)X4(s)200KX4(s)=5μFsX1(s)200KX3(s)=5μFsX1(s)
去除中间变量 X 4 ( s ) X_4(s) X4(s)
X 2 ( s ) U ( s ) + X 1 ( s ) = − 2 s + 1 X 1 ( s ) X 2 ( s ) + X 3 ( s ) = 1 s ( 2 s + 1 ) X 3 ( s ) X 1 ( s ) = − s \cfrac{X_2(s)}{U(s)+X_1(s)}=-\cfrac{2}{s+1} \\ \cfrac{X_1(s)}{X_2(s)+X_3(s)}=\cfrac{1}{s(2s+1)} \\ \cfrac{X_3(s)}{X_1(s)}=-s U(s)+X1(s)X2(s)=s+12X2(s)+X3(s)X1(s)=s(2s+1)1X1(s)X3(s)=s
图略
(2)
由系统结构图可得
2 [ u ( t ) + x 1 ( t ) ] = − ( s + 1 ) x 2 ( t ) x 2 ( t ) + x 3 ( t ) = s ( 2 s + 1 ) x 1 ( t ) x 3 ( t ) = − s x 1 ( t ) y ( t ) = x 1 ( t ) 2[u(t)+x_1(t)]=-(s+1)x_2(t) \\ x_2(t)+x_3(t)=s(2s+1)x_1(t) \\ x_3(t)=-sx_1(t) \\ y(t)=x_1(t) 2[u(t)+x1(t)]=(s+1)x2(t)x2(t)+x3(t)=s(2s+1)x1(t)x3(t)=sx1(t)y(t)=x1(t)
整理可得
x ˙ 1 ( t ) = − x 3 x ˙ 2 ( t ) = − 2 x 1 ( t ) − x 2 ( t ) − 2 u ( t ) x ˙ 3 = − 0.5 x 2 ( t ) − x 3 ( t ) y ( t ) = x 1 ( t ) \dot{x}_1(t)=-x_3 \\ \dot{x}_2(t)=-2x_1(t)-x_2(t)-2u(t) \\ \dot{x}_3=-0.5x_2(t)-x_3(t) \\ y(t)=x_1(t) x˙1(t)=x3x˙2(t)=2x1(t)x2(t)2u(t)x˙3=0.5x2(t)x3(t)y(t)=x1(t)
系统的状态空间模型为
{ x ˙ ( t ) = [ 0 0 − 1 − 2 − 1 0 0 − 0.5 − 1 ] x ( t ) + [ 0 − 2 0 ] u ( t ) y ( t ) = [ 1 0 0 ] x ( t ) \left\{\begin{array}{l} \dot x (t)= \begin{bmatrix} 0 & 0 & -1 \\ -2 & -1 & 0 \\ 0 & -0.5 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} u(t) \\ y(t)= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t) \end{array}\right. x˙(t)= 020010.5101 x(t)+ 020 u(t)y(t)=[100]x(t)
(3)
令(2)中 A x ( t ) = 0 Ax(t)=0 Ax(t)=0,可得系统的平衡点
x 1 ( t ) = 0 , x 2 ( t ) = 0 , x 3 ( t ) = 0 x_1(t)=0,\quad x_2(t)=0,\quad x_3(t)=0 x1(t)=0,x2(t)=0,x3(t)=0
根据
A T P + P A = − Q A^TP+PA=-Q ATP+PA=Q
Q Q Q为单位矩阵,设
P = [ p 11 p 12 p 13 p 12 p 22 p 23 p 13 p 23 p 33 ] P= \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{12} & p_{22} & p_{23} \\ p_{13} & p_{23} & p_{33} \end{bmatrix} P= p11p12p13p12p22p23p13p23p33
解方程组得
P = [ 8 , 5 0.25 − 6 0.25 1.375 − 1.75 − 6 − 1.75 6.5 ] \xcancel{ P= \begin{bmatrix} 8,5 & 0.25 & -6 \\ 0.25 & 1.375 & -1.75 \\ -6 & -1.75 & 6.5 \end{bmatrix} } P= 8,50.2560.251.3751.7561.756.5
P = [ 9.5 0.25 − 6 0.25 1.375 − 1.75 − 6 − 1.75 6.5 ] P= \begin{bmatrix} 9.5 & 0.25 & -6 \\ 0.25 & 1.375 & -1.75 \\ -6 & -1.75 & 6.5 \end{bmatrix} P= 9.50.2560.251.3751.7561.756.5
P各阶主子式均大于零, P P P正定,系统渐进稳定。

6、(2021.11.18改)

(1)
由图可知, G ( s ) G(s) G(s)为惯性环节,设
G ( s ) = K T s + 1 G(s)=\cfrac{K}{Ts+1} G(s)=Ts+1K
ω = 1 \omega=1 ω=1时,相角为 − 45 ° -45° 45°,即
− arctan ⁡ T = − 45 ° -\arctan T=-45° arctanT=45°
解得
T = 1 T=1 T=1
系统的开环传递函数为
G ( s ) H ( s ) = K ( s + 1 ) ( s 2 + 1 ) G(s)H(s)=\cfrac{K}{(s+1)(s^2+1)} G(s)H(s)=(s+1)(s2+1)K
(2)
系统的频率特性为
G ( j ω ) = K 1 − ω 4 − j K ω 1 − ω 4 G(j\omega)=\cfrac{K}{1-\omega^4}-j\frac{K\omega}{1-\omega^4} G()=1ω4Kj1ω4Kω
起点为
A ( 0 + ) = K , φ ( 0 + ) = 0 ° A(0^+)=K,\quad \varphi(0^+)=0° A(0+)=K,φ(0+)=
终点为
A ( ∞ ) = 0 , φ ( ∞ ) = − 270 ° A(\infin)=0,\quad\varphi(\infin)=-270° A()=0,φ()=270°
与实轴交点为起点。当 ω → 1 − \omega\rightarrow1^- ω1时,
A ( ω n ) → + ∞ , φ ( ω ) → − arctan ⁡ 1 − arctan ⁡ 1 2 = − 71.565 ° \xcancel{ A(\omega_n)\rightarrow+\infin,\quad \varphi(\omega)\rightarrow -\arctan1-\arctan\cfrac{1}{2}=-71.565° } A(ωn)+,φ(ω)arctan1arctan21=71.565°
A ( ω n ) → + ∞ , φ ( ω ) → − arctan ⁡ 1 = − 45 ° A(\omega_n)\rightarrow+\infin,\quad \varphi(\omega)\rightarrow -\arctan1=-45° A(ωn)+,φ(ω)arctan1=45°
ω → 1 + \omega\rightarrow1^+ ω1+
A ( ω n ) → + ∞ , φ ( ω ) → − arctan ⁡ 1 − arctan ⁡ 1 2 − π = − 251.565 ° \xcancel{ A(\omega_n)\rightarrow+\infin,\quad \varphi(\omega)\rightarrow -\arctan1-\arctan\cfrac{1}{2}-\pi=-251.565° } A(ωn)+,φ(ω)arctan1arctan21π=251.565°
A ( ω n ) → + ∞ , φ ( ω ) → − arctan ⁡ 1 − π = − 225 ° A(\omega_n)\rightarrow+\infin,\quad \varphi(\omega)\rightarrow -\arctan1-\pi=-225° A(ωn)+,φ(ω)arctan1π=225°
图略(在 ω → 1 − \omega\rightarrow1^- ω1处向 ω → 1 + \omega\rightarrow1^+ ω1+ 180 ° 180° 180°大圆弧)。由图可知, N − = 1 N_-=1 N=1 P = 0 P=0 P=0,则
Z = P − 2 ( N + − N − ) = 2 > 0 Z=P-2(N_+-N_-)=2>0 Z=P2(N+N)=2>0
系统在 s s s右半平面有两个极点,系统不稳定。

7、

系统的开环传递函数
G ( s ) = 100 K ( T s + 1 ) s ( s + 1 ) ( s + 100 ) G(s)=\cfrac{100K(Ts+1)}{s(s+1)(s+100)} G(s)=s(s+1)(s+100)100K(Ts+1)
(1)
K = 100 K=100 K=100 T = 0.05 T=0.05 T=0.05
G ( s ) = 100 ( 0.05 s + 1 ) s ( 0.01 s + 1 ) ( s + 1 ) G(s)=\cfrac{100(0.05s+1)}{s(0.01s+1)(s+1)} G(s)=s(0.01s+1)(s+1)100(0.05s+1)
对数频率特性
L ( ω ) = 20 l g 100 0.0025 ω 2 + 1 ω 0.0001 ω 2 + 1 ω 2 + 1 φ ( ω ) = 180 ° − 90 ° − arctan ⁡ 0.01 ω − arctan ⁡ ω + arctan ⁡ 0.05 ω L(\omega)=20lg\cfrac{100\sqrt{0.0025\omega^2+1}}{\omega\sqrt{0.0001\omega^2+1}\sqrt{\omega^2+1}} \\ \varphi(\omega)=180°-90°-\arctan0.01\omega-\arctan\omega+\arctan0.05\omega L(ω)=20lgω0.0001ω2+1 ω2+1 1000.0025ω2+1 φ(ω)=180°90°arctan0.01ωarctanω+arctan0.05ω
转折频率
ω 1 = 0.01 , ω 2 = 0.05 , ω 3 = 1 \xcancel{ \omega_1=0.01,\quad \omega_2=0.05,\quad \omega_3=1 } ω1=0.01,ω2=0.05,ω3=1
ω 1 = 1 , ω 2 = 20 , ω 3 = 100 \omega_1=1,\quad \omega_2=20,\quad \omega_3=100 ω1=1,ω2=20,ω3=100
系统是 I \text{I} I系统, K = 100 K=100 K=100 20 l g K = 40 db 20lgK=40\text{db} 20lgK=40db。修正对数频率特性,在 ω 1 \omega_1 ω1 ω 3 \omega_3 ω3处减少 3 db 3\text{db} 3db,在 ω 2 \omega_2 ω2处增加 3 db 3\text{db} 3db
图略
(2)
截止频率
A ( ω c ) = 100 0.0025 ω c 2 + 1 ω c 0.0001 ω c 2 + 1 ω c 2 + 1 = 1 A(\omega_c)=\cfrac{100\sqrt{0.0025\omega_c^2+1}}{\omega_c\sqrt{0.0001\omega_c^2+1}\sqrt{\omega_c^2+1}}=1 A(ωc)=ωc0.0001ωc2+1 ωc2+1 1000.0025ωc2+1 =1
解得
ω c = 10.534 r a d / s \omega_c=10.534rad/s ωc=10.534rad/s
相角裕度为
γ = 180 ° − 90 ° − arctan ⁡ 0.01 ω c − arctan ⁡ ω c + arctan ⁡ 0.05 ω c = 27.185 ° \gamma=180°-90°-\arctan0.01\omega_c-\arctan\omega_c+\arctan0.05\omega_c=27.185° γ=180°90°arctan0.01ωcarctanωc+arctan0.05ωc=27.185°
穿越频率
180 ° − 90 ° − arctan ⁡ 0.01 ω g − arctan ⁡ ω g + arctan ⁡ 0.05 ω g = 0 ° 180°-90°-\arctan0.01\omega_g-\arctan\omega_g+\arctan0.05\omega_g=0° 180°90°arctan0.01ωgarctanωg+arctan0.05ωg=
无解,幅值裕度为 ∞ \infin 。由相角裕度和幅值裕度均大于零,系统稳定。
(3)
ω c = 10 \omega_c=10 ωc=10 γ ( ω c ) = arctan ⁡ 100 \gamma(\omega_c)=\arctan100 γ(ωc)=arctan100代入对数频率特性得到方程组
K 100 T 2 + 1 10 0.01 + 1 100 + 1 = 1 90 ° − arctan ⁡ 0.1 − arctan ⁡ 10 + arctan ⁡ 10 T = arctan ⁡ 100 \cfrac{K\sqrt{100T^2+1}}{10\sqrt{0.01+1}\sqrt{100+1}}=1 \\ 90°-\arctan0.1-\arctan10+\arctan10T=\arctan100 100.01+1 100+1 K100T2+1 =190°arctan0.1arctan10+arctan10T=arctan100
解得
K = 1.02 , T = 10 K=1.02,\quad T=10 K=1.02,T=10
(4)
校正前,系统的截止频率为 ω c = 9.975 r a d / s \omega_c=9.975rad/s ωc=9.975rad/s,相角裕度欸 γ = 5.724 ° \gamma=5.724° γ=5.724°,幅值裕度为 ∞ \infin ,系统稳定。校正装置使系统的截止频率基本不变,不改变幅值裕度,增加系统的相角裕度,使系统的抗干扰能力增强。

8、

(1)
根据 1 + N ( A ) G ( s ) = 0 1+N(A)G(s)=0 1+N(A)G(s)=0,改写非线性系统方程
x ¨ − ε x ˙ + x = − ε x 2 x ˙ 1 + ε x 2 x ˙ x ¨ − ε x ˙ + x = 0 \ddot{x}-\varepsilon\dot{x}+x=-\varepsilon x^2\dot{x} \\ 1+\cfrac{\varepsilon x^2\dot{x}}{\ddot{x}-\varepsilon\dot{x}+x}=0 x¨εx˙+x=εx2x˙1+x¨εx˙+xεx2x˙=0
等效线性部分的传递函数
G ( s ) = ε s 2 − ε s + 1 G(s)=\cfrac{\varepsilon}{s^2-\varepsilon s+1} G(s)=s2εs+1ε
(2)
线性部分的频率特性
G ( j ω ) = ε ( 1 − ω 2 ) ( 1 − ω 2 ) 2 + ω 2 ε 2 + j ε 2 ω ( 1 − ω 2 ) 2 + ω 2 ε 2 G(j\omega)=\cfrac{\varepsilon(1-\omega^2)}{(1-\omega^2)^2+\omega^2\varepsilon^2}+j\cfrac{\varepsilon^2\omega}{(1-\omega^2)^2+\omega^2\varepsilon^2} G()=(1ω2)2+ω2ε2ε(1ω2)+j(1ω2)2+ω2ε2ε2ω
ω = 1 \omega=1 ω=1时,与虚轴交点为 1 1 1,相角特性为
φ ( ω ) = arctan ⁡ ε ω 1 − ω 2 \varphi(\omega)=\arctan\cfrac{\varepsilon\omega}{1-\omega^2} φ(ω)=arctan1ω2εω
ω = 0 \omega=0 ω=0
A ( ω ) = ε , φ ( ω ) = 0 ° A(\omega)=\varepsilon,\quad \varphi(\omega)=0° A(ω)=ε,φ(ω)=
ω → + ∞ \omega\rightarrow+\infin ω+
A ( ω ) → 0 , φ ( ω ) = 180 ° A(\omega)\rightarrow0,\quad \varphi(\omega)=180° A(ω)0,φ(ω)=180°
负倒描述函数为
− 1 N ( A ) = j 4 A ω -\cfrac{1}{N(A)}=j\cfrac{4}{A\omega} N(A)1=jAω4
负倒描述函数曲线为正虚轴从 + ∞ +\infin + 0 0 0的直线。负倒描述函数曲线与线性部分奈奎斯特曲线有交点 1 ε \cfrac{1}{\varepsilon} ε1,当 ω \omega ω增大时,负倒描述函数曲线从稳定区域进入到不稳定区域, G ( j ω ) G(j\omega) G()曲线对负倒数描述函数曲线的穿越次数为
N = N + − N − = 1 N=N_+-N_-=1 N=N+N=1

Z = P − 2 N = 0 Z=P-2N=0 Z=P2N=0
故系统存在稳定的周期运动,令
− 1 N ( A ) = 1   ( ω = 1 ) -\frac{1}{N(A)}=1\ (\omega=1) N(A)1=1 (ω=1)
解得
A = 4 A=4 A=4
(3)
根据(2)可画出图,略。
(4)
系统存在自激振荡,自振时输出信号函数为
x ( t ) = − 4 sin ⁡ t x(t)=-4\sin t x(t)=4sint

9、(2021.12.6改)(2021.12.18改)

(1)
根据 Φ ˙ ( t ) = A Φ ( t ) \sout{\dot{\Phi}(t)=A\Phi(t)} Φ˙(t)=AΦ(t)
[ 2 e t − 2 e 2 t e t − 2 e 2 t − 2 e t + 4 e 2 t − e t + 4 e 2 t ] = A [ 2 e t − e 2 t e t − e 2 t − 2 e t + 2 e 2 t − e t + 2 e 2 t ] \xcancel{ \begin{bmatrix} 2e^t-2e^{2t} & e^t-2e^{2t} \\ -2e^t+4e^{2t} & -e^t+4e^{2t} \end{bmatrix}= A \begin{bmatrix} 2e^t-e^{2t} & e^t-e^{2t} \\ -2e^t+2e^{2t} & -e^t+2e^{2t} \end{bmatrix} } [2et2e2t2et+4e2tet2e2tet+4e2t]=A[2ete2t2et+2e2tete2tet+2e2t]
t = 1 \sout{t=1} t=1
A = [ 0 − 1 2 3 ] [ 1 0 0 1 ] = [ 0 − 1 2 3 ] \xcancel{ A= \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}= \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix} } A=[0213][1001]=[0213]
(2)
系统的传递函数
G ( s ) = C ( s I − A ) − 1 B = 1 s 2 − 3 s + 2 [ 1 0 ] [ s − 1 2 s − 3 ] [ 0 1 ] = − 1 s 2 − 3 s + 2 \xcancel{ \begin{aligned} G(s)&=C(sI-A)^{-1}B \\ &=\cfrac{1}{s^2-3s+2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & -1 \\ 2 & s-3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &=-\cfrac{1}{s^2-3s+2} \end{aligned} } G(s)=C(sIA)1B=s23s+21[10][s21s3][01]=s23s+21
(3)
系统的能控性矩阵
Q c = [ B A B ] = [ 0 − 1 1 3 ] \xcancel{ Q_c= \begin{bmatrix} B & AB \end{bmatrix}= \begin{bmatrix} 0 & -1 \\ 1 & 3 \end{bmatrix} } Qc=[BAB]=[0113]
rank Q c = 2 \sout{\text{rank}Q_c=2} rankQc=2,满秩,系统完全能控。系统能观矩阵
Q o = [ C C A ] = [ 1 0 0 − 1 ] \xcancel{ Q_o= \begin{bmatrix} C \\ CA \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} } Qo=[CCA]=[1001]
rank Q o = 2 \sout{\text{rank}Q_o=2} rankQo=2,满秩,系统完全能观。
(4)
由(3)可知,系统完全能控,可任意配置极点,加入状态反馈的特征方程
det [ λ I − A − B K ] = det [ λ 1 − 2 − k 1 λ − 3 − k 2 ] = λ 2 − ( 3 + k 2 ) λ + 2 + k 1 \xcancel{ \text{det}[\lambda I-A-BK]=\text{det} \begin{bmatrix} \lambda & 1 \\ -2-k_1 & \lambda-3-k_2 \end{bmatrix}= \lambda^2-(3+k_2)\lambda+2+k_1 } det[λIABK]=det[λ2k11λ3k2]=λ2(3+k2)λ+2+k1
闭环系统的期望特征方程
f ∗ ( λ ) = λ 2 + 6 λ + 12 \xcancel{ f^*(\lambda)=\lambda^2+6\lambda+12 } f(λ)=λ2+6λ+12
对比两式可得状态反馈矩阵
K = [ 10 − 9 ] \xcancel{ K= \begin{bmatrix} 10 \\ -9 \end{bmatrix} } K=[109]

(1)
根据 Φ − 1 ( t ) = Φ ( − t ) \Phi^{-1}(t)=\Phi(-t) Φ1(t)=Φ(t) Φ ˙ ( t ) = A Φ ( t ) \dot{\Phi}(t)=A\Phi(t) Φ˙(t)=AΦ(t)
[ − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t 2 e − t − 4 e − 2 t e − t − 4 e − 2 t ] = A [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] \begin{bmatrix} -2e^{-t}+2e^{-2t} & -e^{-t}+2e^{-2t} \\ 2e^{-t}-4e^{-2t} & e^{-t}-4e^{-2t} \end{bmatrix}= A \begin{bmatrix} 2e^{-t}-e^{-2t} & e^{-t}-e^{-2t} \\ -2e^{-t}+2e^{-2t} & -e^{-t}+2e^{-2t} \end{bmatrix} [2et+2e2t2et4e2tet+2e2tet4e2t]=A[2ete2t2et+2e2tete2tet+2e2t]
t = 0 t=0 t=0
A = [ 0 1 − 2 − 3 ] [ 1 0 0 1 ] = [ 0 1 − 2 − 3 ] A= \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}= \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} A=[0213][1001]=[0213]
(2)
系统的状态空间方程为能控标准型,则其传递函数为
G ( s ) = 1 s 2 + 3 s + 2 \begin{aligned} G(s) &= \frac{1}{s^2+3s+2} \end{aligned} G(s)=s2+3s+21
(3)
系统的能控性矩阵
Q c = [ B A B ] = [ 0 1 1 − 3 ] Q_c= \begin{bmatrix} B & AB \end{bmatrix}= \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix} Qc=[BAB]=[0113]
rank Q c = 2 \text{rank}Q_c=2 rankQc=2,满秩,系统完全能控。系统能观矩阵
Q o = [ C C A ] = [ 1 0 0 1 ] Q_o= \begin{bmatrix} C \\ CA \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Qo=[CCA]=[1001]
rank Q o = 2 \text{rank}Q_o=2 rankQo=2,满秩,系统完全能观。
(4)
由(3)可知,系统完全能控,可任意配置极点,加入状态反馈的特征方程
det [ λ I − A − B K ] = det [ λ − 1 2 − k 1 λ + 3 − k 2 ] = λ 2 + ( 3 − k 2 ) λ − 2 + k 1 \xcancel{ \text{det}[\lambda I-A-BK]=\text{det} \begin{bmatrix} \lambda & -1 \\ 2-k_1 & \lambda+3-k_2 \end{bmatrix}= \lambda^2+(3-k_2)\lambda-2+k_1 } det[λIABK]=det[λ2k11λ+3k2]=λ2+(3k2)λ2+k1
det [ λ I − A − B K ] = det [ λ − 1 2 − k 1 λ + 3 − k 2 ] = λ 2 + ( 3 − k 2 ) λ + 2 − k 1 \text{det}[\lambda I-A-BK]=\text{det} \begin{bmatrix} \lambda & -1 \\ 2-k_1 & \lambda+3-k_2 \end{bmatrix}= \lambda^2+(3-k_2)\lambda+2-k_1 det[λIABK]=det[λ2k11λ+3k2]=λ2+(3k2)λ+2k1
闭环系统的期望特征方程
f ∗ ( λ ) = λ 2 + 6 λ + 12 f^*(\lambda)=\lambda^2+6\lambda+12 f(λ)=λ2+6λ+12
对比两式可得状态反馈矩阵
K = [ 14 − 3 ] \xcancel{ K= \begin{bmatrix} 14 \\ -3 \end{bmatrix} } K=[143]
K = [ − 10 − 3 ] K= \begin{bmatrix} -10 \\ -3 \end{bmatrix} K=[103]

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值